G.Gratta Physics Dept Stanford University

Double-beta decay:

and new results

from EXO-200

SPP 2012, Groningen, Jun 2012

Double-beta decay:

a second-order process only detectable if first order beta decay is energetically forbidden

Candidate nuclei with Q>2 MeV

Candidate	Q	Abund.
	(MeV)	(%)

⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
96 Zr \rightarrow ⁹⁶ Mo	3.350	2.8
$^{100}Mo \rightarrow ^{100}Ru$	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.458	8.9
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6

There are two varieties of $\beta\beta$ decay

2v mode: a conventional 2nd order process in nuclear physics

"Dirac" neutrinos

(some "redundant" information but the "good feeling" of things we know...)

"Majorana" neutrinos

(more efficient description, no lepton number conservation, new paradigm...)

Which way Nature chose to proceed is an experimental question

→ But the alternative is only meaningful/testable for massive particles... which we now know neutrinos are!

DoubleBeta decay

Our knowledge of the v mass pattern

The connection of v masses with cosmological measurements is particularly interesting because it ties together very different fields. We need both, the connection between the two is the interesting part!

DoubleBeta decay

In the last 10 years there has been a transition

1) From a few kg detectors to 100s or 1000s kg detectors → Think big: qualitative transition from cottage industry to large experiments

2) From "random shooting" to the knowledge that at least the inverted hierarchy will be tested

Discovering Ovββ decay: → Discovery of the neutrino mass scale → Discovery of Majorana particles → Discovery of Majorana masses → Discovery of lepton number violation

If $0v\beta\beta$ is due to light v Majorana masses

$$\left\langle m_{\nu}\right\rangle^{2} = \left(T_{1/2}^{0\nu\beta\beta} G^{0\nu\beta\beta}(E_{0},Z) \left|M_{GT}^{0\nu\beta\beta} - \frac{g_{\nu}^{2}}{g_{A}^{2}}M_{F}^{0\nu\beta\beta}\right|^{2}\right)^{-1}$$

$$M_{F}^{\,0
uetaeta}$$
 and $M_{GT}^{\,0
uetaeta}$

 $G^{0
uetaeta}$

 $T_{1/2}^{0\nu\beta\beta}$

can be calculated within particular nuclear models

a known phasespace factor

is the quantity to be measured

$$\langle m_{v} \rangle = \sum_{i=1}^{3} \left| U_{e,i} \right|^{2} m_{i} \mathcal{E}_{i}$$

effective Majorana v mass ($\varepsilon_i = \pm 1$ if CP is conserved)

Note, however, that to discover Majorana neutrinos and lepton number violation the value of the nuclear matrix element is inessential!

 \rightarrow 0v $\beta\beta$ decay always implies new physics

This is comforting for the ones of us spending their time building experiments!

Simplified List of Limits for BBOv decay

Candidate	Detector		Present	<m> (eV)</m>
nucleus	type	(kg yr)	T _{1/2} ^{0νββ} (yr)	
48 Ca			>5.8*10 ²² (90%CL)	
⁷⁶ Ge	Ge diode	47.7	>1.9*10 ²⁵ (90%CL)	<0.35
⁸² Se			>2.1*10 ²³ (90%CL)	
⁹⁶ Zr			>9.2*10 ²¹ (90%CL)	
¹⁰⁰ Mo	Foil.Geiger	tubes	>5.8*10 ²³ (90%CL)	
¹¹⁶ Cd			>1.7*10 ²³ (90%CL)	
¹²⁸ Te			>1.1*10 ²³ (90%CL)	
¹³⁰ Te	TeO ₂ cryo	~12	>3*10 ²⁴ (90%CL)	<0.19-0.68
¹³⁶ Xe	Xe scint	~4.5	>1.2*10 ²⁴ (90%CL)	→1.1-2.9
	Xe TPC	32.3	>1.6*10 ²⁵ (90%CL)	<0.14-0.38
¹⁵⁰ Nd			>1.8*10 ²² (90%CL)	
¹⁶⁰ Gd			>1.3*10 ²¹ (90%CL)	

SPP 2012, Groningen Jun 2011

$\beta\beta0\nu$ discovery claim

Fit model:

6 gaussians + linear bknd.

Fitted excess @ $Q_{\beta\beta}$ 28.75 ± 6.86.

Claimed significance: 4.2 σ

$$T_{1/2} = 2.23^{+0.44}_{-0.31} \cdot 10^{24} yr$$
$$\langle m_{\nu} \rangle = 0.32 \pm 0.03 \ eV$$

[H.V.Klapdor-Kleingrothaus and I.Krivosheina, Mod.Phys.Lett. A21 (2006) 1547]

However, this is a very controversial matter

See e.g. Strumia+Vissani Nucl Phys B726 (2005) 294

SPP 2012, Groningen Jun 2011

Need very	y large f	iducial
mass	(tons) of	isotopically
separa	ted mate	erial
(except	t for ¹³⁰	Ге)

[using natural material typically means that 90% of the source produced background but not signal]

This is expensive and provides encouragement to use the material in the best possible way:

For no bkgnd
$$\langle m_{\nu} \rangle \propto 1 / \sqrt{T_{1/2}^{0\nu\beta\beta}} \propto 1 / \sqrt{Nt}$$

Candidate	Q (MeV)	Abund. (%)
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.458	8.9
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6

For statistical bkgnd subtraction

$$\langle m_{\nu} \rangle \propto 1 / \sqrt{T_{1/2}^{0\nu\beta\beta}} \propto 1 / (Nt)^{1/4}$$

How to "organize" an experiment: the source

- High Q value reduces backgrounds and increases the phase space & decay rate,
- Large abundance makes the experiment cheaper
- A number of isotopes have similar matrix element performance

How to "organize" an experiment: the technique

- Final state ID: 1) "Geochemical": search for an abnormal abundance
 - of (A,Z+2) in a material containing (A,Z)
 - 2) "Radiochemical": store in a mine some material (A,Z)
 - and after some time try to find (A,Z+2) in it
 - + Very specific signature
 - + Large live times (particularly for 1)
 - + Large masses
 - Possible only for a few isotopes (in the case of 1)
 - No distinction between Ov, 2v or other modes
- "Real time": ionization or scintillation is detected in the decay
 - a) "Homogeneous": source=detector
 - b) "Heterogeneous": source # detector
 - + Energy/some tracking available (can distinguish modes)
 - + In principle universal (b)
 - Many γ backgrounds can fake signature
 - Exposure is limited by human patience

Shielding a detector from gammas is difficult because the absorption cross section is small.

Example: y interaction length in Ge is 4.6 cm, comparable to the size of a germanium detector.

Shielding *BB* decay detectors is much harder than shielding Dark Matter ones We are entering the "golden era" of *BB* decay experiments as detector sizes exceed int lengths

SPP 2012, Groningen Jun 2011

DoubleBeta decay

<u>The two can be separated in a detector with</u> <u>sufficiently good energy resolution</u>

Topology and particle ID are also important to recognize backgrounds

Some experiments in preparation

(~approved or under construction, in addition a number of R&D efforts)

Isotope	Experiment	Main principle	Fid mass	Status	Lab
	Majorana [†]	Eres,2site tag, Cu shield	30-60kg	Construction	SUSEL
⁷⁶ Ge	Gerda [†]	Eres,2site tag, LAr shield	34.3 kg	Data taking	G Sasso
	MaGe/GeMa	See above	~1ton	Planning	?
¹⁵⁰ Nd	SNO+	Size/shielding	44 kg	Construction	SNOlab
⁸² Se	SuperNEMO [‡]	Tracking	100 kg	Planning	Canfranc Frejus
¹³⁰ Te*	CUORE	E Res.	204 kg	Construction	G Sasso
¹³⁶ Xe	KamLAND-Zen	Size/shielding	400 kg	Data taking	Kamioka
1362	EXO	Tracking/Eres	150 kg	Data taking	WIPP
¹³⁰ Xe		Ba tag, Track/Eres	1-10ton	Planning	SNOlab?

* No isotopic enrichment in baseline design

⁺ Plan to merge efforts for ton-scale experiment

SPP 2012, Groningen Jun 2 [†] Non-homogeneous detector

It is very important to understand that a healthy neutrinoless double-beta decay program requires more than one isotope. This is because:

- There could be unknown gamma transitions and a line observed at the "end point" in one isotope does not necessarily imply that Ovßß decay was discovered
- Nuclear matrix elements are not very well known and any given isotope could come with unknown liabilities
- Different isotopes correspond to vastly different experimental techniques
- 2 neutrino background is different for various isotopes
- The elucidation of the mechanism producing the decay requires the analysis of more than one isotope

SPP 2012, Groningen Jun 2011

Xe is ideal for a large experiment

- No need to grow crystals
- Can be re-purified during the experiment
- No long lived Xe isotopes to activate
- Can be easily transferred from one detector to another if new technologies become available
- Noble gas: easy(er) to purify
- ¹³⁶Xe enrichment easier and safer:
 - noble gas (no chemistry involved)
 - centrifuge feed rate in gram/s, all mass useful
 - centrifuge efficiency $\sim \Delta m$. For Xe 4.7 amu
- Only known case where final state identification appears to be not impossible
 - \rightarrow elominate all non- $\beta\beta$ backgrounds

• ¹²⁹Xe is a hyperpolarizable nucleus, under study for NMR

tomography... a joint enrichment program ?

The EXO-200 TPC Two almost identical halves reading ionization and 178 nm scintillation, each with:

- 38 U triplet wire channels (charge)
- 38 V triplet wire channels, at 60° (induction)
- 234 large Avalanche PhotoDiodes (in gangs of 7)
- Triplet pitch 9 mm
- Wire planes 6 mm apart and 6 mm from APDs
 - Signals digitized at 1 MS/s, ±1024s around trigger
- Drift field 376 V/cm
 - Field shaping rings: copper
 - Supports: acrylic
 - Light reflectors/diffusers: Teflon
 - APD support plane: copper; Au (Al) coated for contact (light reflection)
 - Central cathode, U+V wires: photoetched phosphor bronze
 - Flex cables for bias/readout: copper on kapton, no glue
 - Vast material screening program
 - → Goal: 40 cnts/2y in 0vββ ±2σ ROI, 140 kg LXe 20

-40 cm-

Copper vessel 1.37 mm thick
175 kg LXe, 80.6% enr. in ¹³⁶Xe
Copper conduits (6) for:
APD bias and readout cables
U+V wires bias and readout
LXe supply and return
Epoxy feedthroughs at cold and warm doors
Dedicated HV bias line

EXO-200 detector: Characterization of APDs: Materials screening: JINST 7 (2012) P05010 NIM A608 68-75 (2009) NIM A591, 490-509 (2008)

The EXO-200 Detector

Data taking phases and Xenon Purity

	Run I	Run 2 (this analysis)
Period	May 21, 11 – Jul 9, 11	Sep 22, 11 - Apr 15,12
Live Time	752.7 hr	2,896.6 hr
Exposure	3.2 kg-yr	32.5 kg-yr
Publ.	PRL 107 (2011) 212501	arXiv:1205:5608 (May 2012)

Xenon gas is forced through heated Zr getter by a custom ultraclean pump.

Electron lifetime T_e : \rightarrow measure ionization signal attenuation as a function of drift time for the full-absorption peak of γ ray sources

```
At Te = 3 ms:

- drift time <110 μs

- loss of charge: 3.6%

at full drift length
```

```
Ultraclean pump:

Rev Sci Instr. 82 (10) 105114

Xenon purity with mass spec:

NIM A675 (2012) 40

Gas purity monitors:

NIM A659 (2011) 215
```


23

T_{1/2} = (2.11 ± 0.04 stat ± 0.21 sys) · 10²¹ yr

[Ackerman et al Phys Rev Lett 107 (2001) 212501]

In significant disagreement with previous limits: $T_{1/2} > 1.0 \cdot 10^{22}$ yr (90% C.L.) (R. Bernabei *et al.* Phys. Lett. B 546 (2002) 23)

T_{1/2} > 8.5 · 10²¹ yr (90% C.L.) (Yu. M. Gavriljuk *et al.*, Phys. Atom. Nucl. 69 (2006) 2129)

Later confirmed by KamLAND-ZEN T_{1/2}=(2.38 ± 0.02stat ± 0.14sys) · 10²¹ yr [A.Gando et al. Phys Rev C 85 (2012) 045504]

Combining Ionization and Scintillation

Energy Calibration

Source Data/MC Agreement

- Single site fraction agrees to within 8.5%
- Source activities measured to within 9.4%

Rn Content in Xenon

Long-term study shows a constant source of ²²²Rn dissolving in ^{enr}LXe: 360 ± 65 µBq (Fid. vol.)

DoubleBeta decay

Low Background 2D SS Spectrum

Events removed by diagonal cut:

- α (larger ionization density \rightarrow more recombination \rightarrow more scintillation light)
- events near detector edge \rightarrow not all charge is collected

Low Background Spectrum

Low background run livetime: 120.7 days

Active mass: 98.5 kg LXe (79.4kg ¹³⁶LXe)

Exposure: 32.5 kg.yr

Vetos dead time: 8.6%

 ββ2ν

 ββ0ν (90% CL Limit)

 ⁴⁰K LXe Vessel

 ⁵⁴Mn LXe Vessel

 ⁶⁰Co LXe Vessel

 ⁶⁵Zn LXe Vessel

 ²³²Th LXe Vessel

 ²³⁸U LXe Vessel

 ¹³⁵Xe Active LXe

 ²²²Rn Active LXe

 ²²²Rn Inactive LXe

 ²¹⁴Bi Cathode Surface

 ²²²Rn Air Gap

Low background spectrum zoomed around the Ovßß region of interest (ROI)

 ββ2ν

 ββ0ν (90% CL Limit)

 40K LXe Vessel

 54Mn LXe Vessel

 60Co LXe Vessel

 65Zn LXe Vessel

 232Th LXe Vessel

 238U LXe Vessel

 135Xe Active LXe

 222Rn Active LXe

 222Rn Inactive LXe

 214Bi Cathode Surface

 222Rn Air Gap

 Data

 Total

No Ov signal observed in the ROI

Use likelihood fit to establish limit

Background counts in $\pm 1,2 \sigma$ ROI

	Expected eve		ents from fit	
	ť	1 σ	±2	2σ
²²² Rn in cryostat air-gap	1.9	±0.2	2.9	±0.3
²³⁸ U in LXe Vessel	0.9	±0.2	1.3	±0.3
²³² Th in LXe Vessel	0.9	±0.1	2.9	±0.3
²¹⁴ Bi on Cathode	0.2	±0.01	0.3	±0.02
All Others	~0.2		~0.2	
Total	4.1	±0.3	7.5	±0.5
Observed		1	;	5
Background index b (kg ⁻¹ yr ⁻ ¹ keV ⁻¹)	1.5.10	⁻³ ± 0.1	1.4.10	⁻³ ± 0.1

Limits on $T_{1/2}^{Ov\beta\beta}$ and $\langle m_{\beta\beta} \rangle$

Summary

- Several new experiments started taking data in the last year
- As usual, new experiments are much more powerful than the previous generation
- Expect rapid progress for the next few years
- Stay tuned for more results!

The EXO collaboration

University of Alabama, Tuscaloosa AL, USA D. Auty, M. Hughes, R. MacLellan, A. Piepke, K. Pushkin, M. Volk

University of Bern, Switzerland

M. Auger, S. Delaquis, D. Franco, G. Giroux, R. Gornea, T. Tolba, J-L. Vuilleumier, M. Weber

CALTECH, Pasadena CA, USA P. Vogel

Carleton University, Ottawa ON, Canada A. Coppens, M. Dunford, K. Graham, C. Hägemann, C. Hargrove, F. Leonard, C. Oullet, E. Rollin, D. Sinclair, V. Strickland

Colorado State U., Fort Collins CO, USA

S. Alton, C. Benitez-Medina, C. Chambers, Adam Craycraft, S. Cook, W. Fairbank, Jr., K. Hall, N. Kaufold, T. Walton

University of Illinois, UC, USA

D. Beck, J. Walton, L. Yang

Indiana University, Bloomington IN, USA T. Johnson, L.J. Kaufman University of California, Irvine CA, USA M. Moe

ITEP Moscow, Russia

D. Akimov, I. Alexandrov, V. Belov, A. Burenkov, M. Danilov, A. Dolgolenko, A. Karelin, A. Kovalenko, A. Kuchenkov, V. Stekhanov, O. Zeldovich

Laurentian U, Sudbury ON, Canada

E. Beauchamp, D. Chauhan, B. Cleveland, J. Farine, B. Mong, U. Wichoski

U of Maryland, College Park MD, USA C. Davis, A. Dobi, C. Hall, S. Slutsky, Y-R. Yen U of Massachusetts, Amherst MA, USA T. Daniels, S. Johnston, K. Kumar, A. Pocar, J.D. Wright

University of Seoul, South Korea D. Leonard

SLAC, Menlo Park CA, USA

M. Breidenbach, R. Conley, R. Herbst, S. Herrin, J. Hodgson, A. Johnson, D. Mackay, A. Odian, C.Y. Prescott, P.C. Rowson, J.J. Russell, K. Skarpaas, M. Swift, A. Waite, M. Wittgen, J. Wodin

Stanford University, Stanford CA, USA

P.S. Barbeau, T. Brunner, J. Davis, R. DeVoe, M.J. Dolinski, G. Gratta, M. Montero-Díez, A.R. Müller, R. Neilson, I. Ostrovskiy, K. O'Sullivan, A. Rivas, A. Sabourov, D. Tosi, K. Twelker

TUM, Garching, Germany

W. Feldmeier, P. Fierlinger, M. Marino

Systematics and sensitivity

Error breakout: expected 90% CL limit given absolute knowledge (0 error) of a given parameter or set of parameters

Term	%
Fiducial Volume	12.34
β scale	9.32
SS / (SS + MS)	0.93
²³² Th LXe Vessel	0.11
²³⁸ U LXe Vessel	0.04
²²² Rn Air Gap	0.04
Calibration offsets	0.04

Distribution of Ovßß T1/2 90% CL

From estimated background, expect to quote a 90% CL upper limit on T_{1/2} :

2	1.6	$x \ 10^{25} \ yr$	6.5%	of the time
2	7	x 10 ²⁴ yr	50%	of the time