

Precision measurements in nuclear beta decay

Oscar Naviliat-Cuncic

National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy Michigan State University

Scope and Outline

• Present recent results and discuss new projects in beta decay motivated by tests of fundamental symmetries and the searches for new interactions.

- 1. Determination of the effective weak coupling (V_{ud}) from nuclear mirror transitions
- 2. T-violating correlations in nuclear and neutron decays

V_{ud} from nuclear mirror transitions

The strength of the weak interaction

• Quark mixing with 2 generations \rightarrow one new parameter: θ_C (Cabibbo angle)

$$G_{\mu} = G_F \propto g^2$$
 $G_V = G_F \cos \theta_C$ $G_A = G_F \sin \theta_C$

 $(\theta_C \approx 13^{\circ})$

Quark mixing within the Standard Model

• 3 quark generations; weak interacting states are mixtures of mass eigenstates (CKM matrix):

$$\cos\theta_C = V_{ud} = G_V / G_F$$

- Determination of $/V_{ud}$ from experiments (systems with *ud* quarks):
 - Nuclear super-allowed pure Fermi ($0^+ \rightarrow 0^+$) transitions (Vector)
 - Neutron decay (Vector and Axial)
 - Pion beta decay (Vector)

$$n \to p + e^- + \overline{\nu}_e$$

- $\pi^+ \to \pi^0 + e^+ + V_e$
- Nuclear super-allowed isospin doublets (Vector and Axial)

V_{ud} from T=1/2 mirror transitions

Decay rate corrected for:

- Phase space; branching ratio
- Radiative effects (EM and weak)
- Isospin and nuclear structure effects

$$\mathit{Ft}_0 = 2\mathit{Ft}(\ 0^+ {\longrightarrow}\ 0^+\,)$$

• First consistent test of CVC in a set of nuclear transitions other than super-allowed pure Fermi

 $|V_{ud}| = 0.9719(17)$

• Comparable precision to neutron for which dedicated experimental activity has been going on for more than 20 years.

Experimental difficulty

• In contrast to pure Fermi transitions, mirror transitions are mixed (V and A)

$$\mathcal{F} t_0 = \mathcal{F} t C_V^2 |M_F^0|^2 [1 + (f_A/f_V)\rho^2], \qquad \rho \approx C_A M_{GT} / C_V M_F$$

• Eactorize the Vector contribution

Similar to $0^+ \rightarrow 0^+$ transitions

Determine the mixing ratio from experiments

• The GT/F mixing ratio has to be determined experimentally (correlations)

Error budget and new efforts

N. Severijns and O.N-C, Annu.Rev.Nucl.Part.Sci. 61 (2011) 23

Measurement of a in ³⁵Ar decay

Searches for Time Reversal Violation (triple correlations)

TRV correlations in beta decay

P-even, T-odd correlation: P-odd, T-odd correlation:

 $D \vec{J} \cdot (\vec{p} \times \vec{p}) / E_{z} E_{z}$ $R \,\vec{\sigma}_e \cdot \left(\vec{J} \times \vec{p}_e \right) / E_e$

Do not probe the same physics

Phenomenology and complementarity with EDMs: T. Chupp talk (... now wait until Wednesday)

Outline

- Final result of the measurement of R in neutron decay at PSI
- Ongoing measurement of R in ⁸Li decay at TRIUMF
- A new triple momentum correlation

Measurement of R in neutron decay

Cracow, PSI, LPC-Caen, KU-Leuven, ETH-Zurich, NSCL, Katowice

 $R \vec{\sigma}_e \cdot (\vec{J} \times \vec{p}_e) / E_e$ Maximal sensitivity for mutually perpendicular vectors

- Polarized cold neutron beam FUNSPIN/PSI.
- Transverse electron polarization analysis by Mott scattering on Pb-foil

- Tracking of electrons in low-mass, low-Z MWPC
- Identification of Mott events by vertex
- Frequent neutron spin flipping
- Foil IN/OUT measurements

Vertex identification

Final result

• 2007 data

The setup enables also to determine the N correlation (P and T

even) that provides a control of the polarimeter

Constraints on leptoquark exchange model

Exclusion plots from nuclear beta decay (gray areas), and from the measurements of N and R in neutron decay (lines at 1, 2 and 3σ)

Helicity projection amplitudes

	Q=1/3	Q=2/3
Scalar	H _{ij}	F _{ij}
Vector	h _{ij}	f _{ij}

A. Kozela et al., PRC 85 (2012) 045501

Measurement of R in ⁸Li decay

Rikkyo-U, KEK/TRIMF(Jiro Murata et al.): Started at KEK-TRIAC (2008), moved to ISAC-TRIUMF (2009)

Determines the transverse polarization of electron emitted from polarized nuclei

 $R \,\vec{\sigma}_e \cdot \left(\vec{J} \times \vec{p}_e\right) / E_e$

⁸Li from ISAC

- Beam 10⁷ pps @ 28 keV
- 80% polarization (optically pomped)
- 10 μ m Al in 500 G

Status and projected sensitivity

• Production run Nov.2010

A new triple correlation in β -decay

• "A T-odd momentum correlation in radiatve β -decay"

S.Gardner & Daheng He, arXiv:hep-ph/1202.5239

Normal decay

Radiative decay

$$W \approx W_0 \left[1 + A_{\xi}^{SM} \vec{p}_{\gamma} \cdot \left(\vec{p}_e \times \vec{p}_R \right) \right]$$

See S. Gardner's talk for contributions to the T-odd asymmetry.

T-odd 3-momentum correlation

SM "background" (calculated within QED)

"A triple mementum correlation should be sensitive to other T-violating mechanisms than correlations involving spins." (not obvious)

Experimental conditions and first step

- β^- decay to avoid annihilation background.
- gs \rightarrow gs transition to avoid subsequent γ background.
- Ion/atom trapping to detect the recoil (along with e and γ)
- Nuclear decay candidate: ${}^{6}\text{He}^{+} \rightarrow {}^{6}\text{Li}^{2+} + \beta^{-} + \overline{\nu}_{e} + \gamma$
- First step: measure the radiative decay mode (~1%) with a high sensitivity trapping device.

C. Couratin et al., PRL 108 (2012) 243201

This week highlight (Physics Synopsis) at physics.aps.org

Requires addition of γ detectors around trap

5th ISSSP, Groningen, June 18-22, 2011

Recoil ion time of flight (µs)

Summary

• The determination of V_{ud} from nuclear mirror transitions requires the measurement of correlation parameters to deduce the GT/F mixing ρ . An ongoing program at GANIL will measure several such transitions.

• The *R* and *N* coefficients have been measured in neutron decay for the first time. The results are consistent with SM predictions.

• A new measurement of *R* in going at TRIUMF in ⁸Li decay that will possibly reach the level of the FSI for this decay.

 The first step towards the measurement of a new triple momentum correlation considers the detection of the radiative decay mode from trapped ⁶He⁺ by detecting all measurable particles in the final state.