ANDAL ANDAL ANDAL ANDAL ANDAL AND ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDA

Quest for the QCD phase diagram in extreme environments

Kenji Fukushima

Department of Physics, Keio University

Typical Extreme's , Mengi, Mengi, Mengi, Men Mengi, Mengi, Mengi, Mengi, Men **High Temperature** up to $T \sim \Lambda_{\rm OCD} \sim 200 {\rm MeV}$ **Relativistic Heavy-Ion Collision High Baryon Density** up to $\rho_{\rm B} \sim (\Lambda_{\rm OCD})^3 \sim 1 {\rm fm}^{-3}$ **Relativistic Heavy-Ion Collision, Neutron Star Strong Magnetic Field** up to $eB \sim (\Lambda_{OCD})^2 \sim 10^{18}$ gauss **Relativistic Heavy-Ion Collision, Neutron Star** June 19, 2012@SSP in Groningen 2

Thermalization achieved (elliptic flow by a hydro-model) Initial temperature > 200MeV (distribution of thermal photon)

Two Major Phase Transitions in QCD **Quark Deconfinement Transition** (Center Symmetry) $\sim 1 \, \text{fm}$ T^{-1} or $\rho_{\rm B}^{-1/3}$ $T\sim 200~{
m MeV}$ **Chiral Phase Transition** (Chiral Symmetry) "Bare" Quarks $m_a \sim 3-6 \text{ MeV}$ "Constituent" Quarks Nambu-Jona-Lasinio $M_a \sim 350 \text{ MeV}$ June 19, 2012@SSP in Groningen 4

Understanding "Deconfinement" Confinement understood from the non-perturbative propagators of gluons and ghosts in the Landau gauge

June 19, 2012@SSP in Groningen

Confinement at Low Temperature

En des Mendes Mendes Mendes Mendes Mendes Men Mendes Mendes Mendes Mendes Mendes Mendes Mendes Mendes Mendes

Deconfinement at High Temperature

All Excitations with $p \sim 2\pi T \rightarrow$ Perturbative Limit Two Transverse Gluons (unphysical ones canceled)

June 19, 2012@SSP in Groningen

Coupling through the covariant derivative

Modern Picture

Typical Model Results

Conjectured Phase Structure

Experimental Confirmation <u>, ಬೆಕ್ಕೆಎಫ್, ಬೆಕ್ಕೆಎಫ್, ಬೆಕ್ಕೆಎಫ್, ಬೆಕ್ಕೆಎ ಬೆಕ್ಕೆಎಫ್, ಬೆಕ್ಕೆಎಫ್, ಬೆಕ್ಕೆಎಫ್, ಬೆಕ್ಕೆಎಫ್, ಬೆಕ್ಕೆಎಫ್, ಬೆಕ್</u> F **Quark-Gluon Plasma** Temperature SOGP probed by Heavy-Ion Collision ritical **Interesting regions not yet reached** nhomogr Quarkyonic **Hadronic** Phase Matter uSC dSC Liquid-Gas CFL **Color Superconductors** CFL-K⁰, Crystalline CSC Nuclear Superfluid Baryon Chemical Potential $\mu_{\rm B}$ Meson supercurrent Gluonic phase, Mixed phase KF-Hatsuda (2010)

Interpretation of Data

Freeze-out points are located by the particle yields Two regimes in **meson-dominance** and **baryon-dominance**

Mesonic Hagedorn Transition

$$Z \sim \int dm \rho(m) e^{-m/T}$$
$$\rho(m) \sim e^{m/T_{H}}$$
$$T_{c} = T_{H}$$

Baryonic Hagedorn Transition

$$Z \sim \int dm \rho_B(m) e^{-(m_B - \mu_B)/T}$$
$$\rho(m) \sim e^{m_B/T_B}$$
$$T_c = (1 - \mu_B/m_B) T_B$$

Andronic-Blaschke-Braun-Munzinger-Cleymans-KF -McLerran-Oeschler-Pisarski-Redlich-Sasaki (2010) @SSP in Groningen

Thermodynamics

Statistical Model Interpretation KF (2010)

Gluon Deconfinement ~ Increasing entropy

Quark Deconfinement ~ Increasing density

Thermodynamic quantities taken over by (quasi-)gluons and (quasi-)quarks (beyond the Hagedorn limit)

Experimental Challenges

ಚಿತ್ರಿಯಲ್ಲಿ ಚಿತ್ರಿಯಲ್ಲಿ ಚಿತ್ರಿಯಲ್ಲಿ ಚಿತ್ರಿಯ ಚಿತ್ರಿಯಲ್ಲಿ ಚಿತ್ರಿಯಲ್ಲಿ ಚಿತ್ರಿಯಲ್ಲಿ ಚಿತ್ರಿಯಲ್ಲಿ ಚಿತ್ರಿಯ

Theoretical Speculations

June 19, 2012@SSP in Groningen

Quarkyonic Matter

Structure of the Fermi Sphere

Quarks $P \sim O(N_c)$

Baryons

 $1 \sim \Lambda_{\text{OCD}}$

Ground state of large- N_c quark matter at $\mu_q >> \Lambda_{QCD}$

> McLerran, Pisarski Hidaka, Kojo

Interacting Baryon Crystal ~ Quasi-quark Gas

Quarkyonic Chiral Spiral ($\mu_a >> \Lambda_{OCD}$) r, Mengr, Mengr, Mengr, Mengr, Mengr, Mengr, Mengr, Mengr, Mengr, M Choose one direction z with $p_z \sim \mu_q \ (p_x, p_v \sim \Lambda_{QCD})$ (1+1)D system effectively $\overline{\psi}(i\chi^{z}\partial_{z}+\mu\chi^{0})\psi$ $\psi = e^{i \gamma^0 \gamma^2 \mu z} \psi'$ $= \overline{\psi}'(i \chi^z \partial_z) \psi'$ $\langle \bar{\psi}' \psi' \rangle$ = Homogeneous condensate at zero density $\langle \bar{\psi} \psi \rangle = \langle \bar{\psi}' \psi' \rangle \cos(2\mu z)$ $\langle \bar{\psi} \gamma^0 \gamma^z \psi \rangle = \langle \bar{\psi}' \psi' \rangle \sin(2\mu z)$

This quasi-(1+1)D system forms "one patch"

Interweaving Chiral Spirals

ALINE ALINE

As the Fermi sphere enlarges, the patch number increases, forming a chiral quasi-crystal.

Kojo-Hidaka-KF-McLerran-Pisarski (2011)

Some Generic Features

$$E_{p} = \sqrt{p_{x}^{2} + p_{y}^{2} + (\sqrt{p_{z}^{2} + M^{2}} - q)^{2}}$$

Effect of the dynamical mass M significantly canceled by q

Even when N_c and \mu_q are not infinitely large, the chiral spiral is favored near the phase boundary of chiral symmetry Nakano-Tatsumi (2003), KF (2012)

Holographic Evidence

ġŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĔŎŎŎĔŎĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿĿĿŎŎŎĿ

State-of-the-art phase diagram in holographic model

Nakamura-Ooguri-Park, Chuang-Dai-Kawamoto-Lin-Yeh (2010)

Density Effect ~ Magnetic Field Effect Energy dispersion relation in B

$$\omega^2 = p_z^2 + 2|eB|(n+1/2) + m^2 - 2seB$$

Transverse motion = Harmonic Oscillator

Fermions (*s*=1/2) have zero mode – dominant at large *B* Quasi-(1+1)D system is realized along the *B* direction.

Very strong $B + Any \mu_q \rightarrow Chiral Spiral$

Basar-Dunne-Kharzeev

Very strong B + Attractive Int.

 \rightarrow Cooper Instability \rightarrow Magnetic Catalysis

Klimenko, Gyusynin-Miransky-Shovkovy

B Effect on the Phase Diagram r altra altra altra altra altra, altra altra altra altra a QCD phase transitions affected by **B** Chiral cond. b= 0 0.25 Chiral cond. b = 8 Chiral cond. b = 16 Chiral cond. b = 24 Pol. loop b = 00.25 Pol. loop b = 8 0.2 Pol. loop b = 16 Pol. loop b = 240.15 à 0.1 -0.25 150 0.05 T (MeV) 5.28 5 27 5 29 ß

(D'Elia et al)

(Fodor et al)

Monte-Carlo simulation is possible (no sign problem) T_c increases or decreases? We can learn lessons for the high-density QCD!

Origin of the Magnetic Field

Alexa, Alexa,

Strong B generated due to Electrodynamics

on top of the Quark-Gluon Plasma

Local Parity Violation (LPV)

Algen, Algen, Algen, Algen, Algen, Alge Algen, Algen, Algen, Algen, Algen, Algen, Alge

Vilenkin (1980), Metlitski-Zhitnitsky, KF-Kharzeev-Warringa

KF-Mameda (2012)

Soft photon production is under active discussions

Summary

Elen Alexander a Alexander a Alexander Alexander a Alexander a Alexander a Alexander a Alexander a Alexander a

QCD phase diagram – Chiral and Center Symmetry

- □ *High Temperature* Phase transitions well understood from the zero-*T* properties of confinement.
- □ *High Baryon Density* Inhomogeneous states favored near the phase boundary of homogeneous states.
- □ *Strong B Field* Effects on the phase diagram not yet understood. Anomalous phenomena (\mathcal{P} and $C\mathcal{P}$ odd effects)

Experimental efforts focused on the baryon-rich matter and the visible effects of the strong *B*:

Systematic fluctuation measurements to confirm the local parity violation / critical point / inhomogeneity