Lorentz invariance on trial in the weak decay of polarized atoms

Stefan E. Müller, E. Dijck, S. Hoekstra, J. Noordmans, G. Onderwater, L. Willmann, H. Wilschut, R. Timmermans, K. Yai^{*}

NWO Netherlands Organisation for Scientific Research

KVI, University of Groningen/ *Osaka University

5th International Symposium on Symmetries in Subatomic Physics Groningen - June 18-22, 2012 Lorentz symmetry is a fundamental basis of

- the theory of Special Relativity
- the Standard Model of Particle Physics

Connection to General Relativity and CPT symmetry

Lorentz symmetry breaking (LSB)

- Lorentz Symmetry spontaneously broken in Quantum Gravity models
- "hidden" background fields → preferred direction
- precision experiments can look for signatures of LSB
- Many experimental tests, no evidence of LSB (mainly QED tests and gravity experiments)

Weak decay sector essentially unexplored!

assume nuclei interact with Lorentz-violating background fields

What is the change in the decay rate if the orientation of spin changes with respect to background fields?

assume nuclei interact with Lorentz-violating background fields

What is the change in the decay rate if the orientation of spin changes with respect to background fields? *search for variations induced by daily, yearly or "deliberate" reorientation of spin*

assume nuclei interact with Lorentz-violating background fields

What is the change in the decay rate if the orientation of spin changes with respect to background fields? *search for variations induced by daily, yearly or "deliberate" reorientation of spin*

assume nuclei interact with Lorentz-violating background fields

What is the change in the decay rate if the orientation of spin changes with respect to background fields? *search for variations induced by daily, yearly or "deliberate"* reorientation of spin

Change in decay rate for different polarization orientations:

Change in decay rate for different polarization orientations:

I = nuclear spin; *p*, *E* = electron momentum and energy $\xi_{I,2,3,A}$ = coupling strength to LIV fields \hat{n} , ρ^{ij}

Change in decay rate for different polarization orientations:

²⁰Na:

Choice of ²⁰Na:

- ▶ **Properties**: $2^+ \rightarrow 2^+$ (GT), β^+ , $\tau_{\frac{1}{2}} = 0.448$ s, β-asymmetry parameter A₀=1/3
- **Produced** via ²⁰Ne+ $p \rightarrow$ ²⁰Na+ n reaction: 10⁶ decays/s
- 80% decay to excited state of ²⁰Ne(1.63 MeV)

Isotope beam stopped in buffer gas cell

- Aluminum foil degraders & buffer gas pressure (noble gas, 2atm)

- Isotope beam stopped in buffer gas cell
 Aluminum foil degraders & buffer gas pressure (noble gas, 2atm)
- Polarized nuclei via optical pumping:
 - magnetic holding field
 - circularly polarized σ^{\pm} light

Isotope beam stopped in buffer gas cell

- Aluminum foil degraders & buffer gas pressure (noble gas, 2atm)

Polarized nuclei via optical pumping:

- Switching polarization:

Measurement of polarization:

- PHOSWICH detector above target cell to detect β⁺
- Two pairs of Nal detectors to measure 511 keV coincidences from β⁺ particles stopped in mirrors above and below target cell

Use parity violating decay asymmetry of weak interaction to monitor nuclear polarization

Measurement of lifetime:

► Additional Nal detector for daughter particles decay photons $2^+ \rightarrow 0^+$ EM-decay of ²⁰Ne, parity conserving, Lorentz invariant

Experimental setup:

β⁺ Rates from PHOSWICH detector

Lifetime measurement:

- γ Rates from Nal detector
 - 2s-on, 2s-off period of ²⁰Na beam

Lifetime measurement:

γ Rates from Nal detector

- 2s-on, 2s-off period of ²⁰Na beam

-50000

45000 2 40000

> > 5000

 σ + light

²⁰Na

on of on ٥ 200 202 198 <u>×10</u>3 rate [1/s] 35 σ- light no light σ + light 30 25 20 15 10 5 0¹ 0.5 1.5 2 2.5 3 3.5 time [s]

Lifetime-analysis:

on

206

σ- light

off

204

• compare lifetimes for σ^+ and σ^- case

no light

off

208

time in run [s]

• take into account time-dependence of polarization

n

- define and estimate systematic effects
- train algorithms on "no light" case

Data Analysis (simulation):

Data Analysis (simulation):

Data Analysis:

Next steps:

- determine polarization asymmetry
- analyze lifetimes for polarized nuclei
- evaluate and quantify systematic effects

GEANT4 simulation:

Simulations needed for:

- detector acceptances
- study of systematic effects (stopping position of ²⁰Na atoms, detector alignment, etc.)

Standard Model Extension (SME):

$$\frac{d\Gamma}{dE \, d\Omega} \sim \left(1 + A_0 \frac{\langle \vec{I} \rangle}{I} \cdot \frac{\vec{p}}{E}\right) + \xi_1 \left(1 + \xi_A \left(\hat{p} \cdot \frac{\langle \vec{I} \rangle}{I}\right)\right) \hat{p} \, \hat{n} + \xi_2 \frac{\langle \vec{I} \rangle}{I} + \xi_3 \hat{p}_i \left(\frac{\langle \vec{I} \rangle}{I}\right)_j \rho^{ij}$$

Experiment at KVI probes ξ_2

More general framework to compare with other experiments:

Standard Model Extension (SME)

D. Colladay, A. Kostelecký, PRD58 (1998) 116002)

→ Talk by R. Lehnert

- relate ξ coefficients to SME parameters
- use galactical coordinates in sun-centered equatorial frame

Conclusions

Unique Test of LSB using weak decay of polarized particles
 Probe muon, neutron, radioactive isotopes,...

Combined effort from theorists and experimentalists at KVI Interpretation of observables in LSB framework (SME) underway

First dedicated experiment studying LSB on polarized atoms Polarization of nuclei achieved, several 24h-periods of data on disk

Outlook

Lifetime analysis in progress, results expected soon

Thank you!

