"RS-A A_{4} suppression" of Flavor and CP violation

> Avihay Kadosh Center fortheoretical Physics Universiy of Groningen

Based on: 1) A.Kadosh and E.Pallante, JHEP08(2010)115 2) A.Kadosh and E.Pallante, JHEP06(2011)121

Outline

- Motivation
- The RS- A_{4} setup
- Main Features
- Phenomenology and comparison with flavor anarchy
- Conclusions

Motivation

Gauge Hierarchy

 $\mathrm{M}_{P l}$ vs. TeV $\mathrm{O}\left(10^{16}\right)$Find a unified framework to account for the masses and mixing patterns of quarks and leptons.

Fermion mass hierarchy

Smallness and hierarchy of quark mixing angles

$$
\underset{a_{j L}}{V_{i j}}{\underset{W}{W}}_{\sim}^{\sim} u_{i L} V_{i j} \sim\left(\begin{array}{ccc}
1 & \lambda & \lambda^{3} \\
-\lambda & 1 & \lambda^{2} \\
\lambda^{3} & -\lambda^{2} & 1
\end{array}\right) \quad \lambda_{C K M} \simeq 0.2257
$$

Largeness of neutrino mixing angles and smallness of neutrino masses

$\operatorname{TBM}\left(\begin{array}{l}\nu_{e} \\ \nu_{\mu} \\ \nu_{\tau}\end{array}\right)=\left(\begin{array}{ccc}\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{\sqrt{3}}} & \frac{1}{\sqrt{2}} \\ \frac{\sqrt{\sqrt{2}}}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{l}\nu_{1} \\ \nu_{2} \\ \nu_{3}\end{array}\right)+$ H.O?
See-saw mechanism is the most elegant solution

$$
\Longleftrightarrow m_{\nu}=-m_{D}^{T} M_{R}^{-1} m_{D}
$$

parameter	best fit $\pm 1 \sigma$	27	37
$\Delta m \lambda_{1}\left[10^{-8} \mathrm{eV}^{2}\right]$	7.52 ± 0.19	7.27-8.01	$7.12 \mathrm{s.82}$
3. 110^{-}	$2.53{ }_{-0.10}^{+0.08}$	2.34-2.69	2.25-2.77
	$-\left(2.400_{-0.18)}^{0.15}\right)$	$-(2.25-2.59)$	$-(2.15-2.68)$
$\sin ^{2} \theta_{12}$		0.20-0.35	0.27-0.37
$\sin ^{2} \theta_{21}$	$\begin{aligned} & 0.499_{-0.08}^{+0.08} \\ & 0.53_{-0.00}^{+0.00} \end{aligned}$	$0.41-0.62$ $0.42-0.62$	$0.35-0.54$
$\sin ^{2} \theta_{13}$		0.019-0.033	$0.015-0.036$ 0.016-0.037
δ	$\begin{gathered} (0.83+0.54) \pi \\ 0.07 \pi \end{gathered}$	$0-2 \mathrm{~T}$	D-2T

$\mathrm{DAYA} \mathrm{BAY}_{30} \& \mathrm{RENO}_{30} \bar{\nu}_{e}+p \rightarrow e^{+}+n$

 $\sin ^{2}\left(\theta_{13}\right)=0.026_{-0.004}^{+0.003}(1 \sigma)(N H)$
 $$
\theta_{13} \simeq \frac{\theta_{C}}{\sqrt{2}} \approx 9^{\circ}
$$

Valle et al.- arXiv:1205.4018 [hep-ph]

SUSY example: pMSSM maximal mixing scenario (N. Mahmoudi, Moriond 2012)

yellow line: CMS limit with 4.6/fb
Flavor constraints from: $b \rightarrow s \gamma, B \rightarrow T V$ and new LHCb limit on $B_{s} \rightarrow \mu+\mu-$ Assumed discovery of Higgs at $(125 \pm 2) \mathrm{GeV}$

LHC constraints on Warped Xdims

(Randall \& Sundrum, 1999) $\quad \mathrm{AdS}_{5}\left(\mathrm{~S}_{\mathrm{I}} / \mathbf{Z}_{2}\right)$

$$
E(y) \sim k e^{-k y}
$$

Addressing the "Gauge Hierarchy Problem"
Two scales: $k u v \equiv k \sim M_{\text {PI }}$
$k_{I R} \equiv k e^{-\pi k R} \quad k R \cong I I \quad[K K$ scale]

Anarchy

vs. Structure
No underlying flavor symmetry to constrain the pattern of 5D Yukawa couplings and bulk mass parameters (non-degeneracy)

Large FCNC and CP violation (little CP problem)

Custodial symmetry augmented with PLR to bring down the KK scale to a few TeV

Underlying bulk flavor symmetry 5D MFV

Alignment of Yukawas and masses Absence of tree level FCNC

Naturally low KK scale and milder little CP problem

The Yukawa Lagrangian

$\mathcal{L}_{5 D}^{Y u k}=\mathcal{L}_{L O}+\mathcal{L}_{N L O}$

$\Lambda_{5 D}^{-1 / 2} \bar{\ell}_{L} H \nu_{R}$ UV/IR Cross brane $\Lambda_{5 D}^{-3 / 2} \bar{\ell}_{L} H \chi \nu_{R}$
$\left(\Lambda_{5 D}^{-1 / 2} \chi, M\right) \bar{\nu}_{R}^{c} \nu_{R} \quad \Lambda_{5 D}^{-7 / 2} \bar{Q}_{L}\left(\ell_{L}\right) \Phi \chi H\left(u_{R}, d_{R},\left(e_{R}\right)\right)$
$\Lambda_{5 D}^{-2} \bar{Q}_{L}\left(\bar{\ell}_{L}\right) \Phi H\left(u_{R}, d_{R}, e_{R}\right)$
A_{4} Assignments $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L} \times A_{4}$
scalars $\Phi \sim(1,1,1,0)(\underline{3}), \quad \chi \sim(1,1,1,0)(\underline{3}), \quad H(1,2,2,0)(\underline{1})$

$$
Q_{L} \sim\left(3,2,1, \frac{1}{3}\right)(\underline{\mathbf{3}}) \quad \ell_{L} \sim(1,2,1,-1)(\underline{\mathbf{3}})
$$

$u_{R} \oplus u_{R}^{\prime} \oplus u_{R}^{\prime \prime} \sim\left(3,1,2, \frac{1}{3}\right)\left(\underline{\mathbf{1}} \oplus \underline{1}^{\prime} \oplus \underline{\mathbf{1}}^{\prime \prime}\right)$

$$
\nu_{R} \sim(1,1,2,0)(\underline{\mathbf{3}})
$$

$d_{R} \oplus d_{R}^{\prime} \oplus d_{R}^{\prime \prime} \sim\left(3,1,2, \frac{1}{3}\right)\left(\underline{\mathbf{1}} \oplus \underline{\mathbf{1}}^{\prime} \oplus \underline{\mathbf{1}}^{\prime \prime}\right) \quad e_{R} \oplus e_{R}^{\prime} \oplus e_{R}^{\prime \prime} \sim(1,1,2,-1)\left(\underline{\mathbf{1}} \oplus \underline{\mathbf{1}}^{\prime} \oplus \underline{\mathbf{1}}^{\prime \prime}\right)$

LO Results

$$
m_{\nu}=-m_{D}^{T} M_{R}^{-1} m_{D}
$$

SSB of $\mathrm{A}_{4} \quad\langle\Phi\rangle=\left(v_{\Phi}, v_{\Phi}, v_{\Phi}\right)$
$\langle\chi\rangle=\left(0, v_{\chi}, 0\right)$
$A_{4} \rightarrow Z_{3}$ $A_{4} \rightarrow Z_{2}$
\checkmark
$\begin{array}{rlrl}V_{L}^{u, d, e} & =U(\omega)=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right) & V_{L}^{\nu}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & \sqrt{2} & 0 \\ 1 & 0 & 1\end{array}\right) \\ \omega=e^{2 \pi i / 3} & \\ V_{R}^{u, d, e}=1_{3 \times 3} & & V_{R}^{\nu}=V_{L}^{\nu^{T}} & \Delta\end{array}$

No quark mixing at LO!
TBM neutrino mixing $\left(\mathrm{J}_{C P}^{\nu}=0\right)$

NLO Corrections to the CKM Matrix

- Cross brane flavon interactions induce deviations of the CKM matrix from unity

$$
\begin{gathered}
M_{q}+\Delta M_{q}=U(\omega) \sqrt{3}\left(\begin{array}{ccc}
\tilde{y}_{q_{1}} v+\left(x_{1}^{q}+y_{1}^{q}\right) / 3 & \left(x_{2}^{q}+y_{2}^{q}\right) / 3 & \left(x_{3}^{q}+y_{3}^{q}\right) / 3 \\
\left(x_{1}^{q}+\omega y_{1}^{q}\right) / 3 & \tilde{y}_{q_{2}}^{\prime} v+\left(x_{2}^{q}+\omega y_{2}^{q}\right) / 3 & \left(x_{3}^{q}+\omega y_{3}^{q}\right) / 3 \\
\left(x_{1}^{q}+\omega^{2} y_{1}^{q}\right) / 3 & \left(x_{2}^{q}+\omega^{2} y_{2}^{q}\right) / 3 & \tilde{y}_{q_{3}}^{\prime \prime} v+\left(x_{3}^{q}+\omega^{2} y_{3}^{q}\right) / 3
\end{array}\right) \\
\mathbf{q}=\mathbf{u}, \mathbf{d}
\end{gathered}
$$

12 complex parameters $\left(x_{i}^{q}, y_{i}^{q}\right)=f_{\chi}^{q} C_{\chi}\left(\tilde{x}_{i}^{q}, \tilde{y}_{i}^{q}\right) \simeq 0.05\left(\tilde{x}_{i}^{q}, \tilde{y}_{i}^{q}\right)$
-Parameterizing $\mathrm{V}_{\text {CKM }}$ in terms of $\lambda: \mathcal{O}\left(x_{i}^{u, d}, y_{i}^{u, d}\right)$

$$
\left.\begin{array}{rl}
\longrightarrow & V_{C K M}=\left(\begin{array}{ccc}
1+\mathcal{O}\left(\lambda^{2}\right) & a \lambda & b \lambda^{3} \\
-a^{*} \lambda & 1+\mathcal{O}\left(\lambda^{2}\right) & c \lambda^{2} \\
-b^{*} \lambda^{3} & -c^{*} \lambda^{2} & 1+\mathcal{O}\left(\lambda^{2}\right)
\end{array}\right) \\
& \left|V_{u b}\right| \neq\left|V_{t d}\right| \text { and phase structure }
\end{array} \longrightarrow \mathcal{O}\left(\left(x_{i}^{u, d}\right)^{2},\left(y_{i}^{u, d}\right)^{2}\right)\right) ~ ?
$$

NLO Corrections to the PMNS Matrix

- Cross brane flavon interactions induce deviations of the PMNS matrix from TBM

$$
M_{\ell}+\Delta M_{\ell}=U(\omega) \sqrt{3}\left(\begin{array}{ccc}
\tilde{y}_{e} v+\left(x_{1}^{\ell}+y_{1}^{\ell}\right) / 3 & \left(x_{2}^{\ell}+y_{2}^{\ell}\right) / 3 & \left(x_{3}^{\ell}+y_{3}^{\ell}\right) / 3 \\
\left(x_{1}^{\ell}+\omega y_{1}^{\ell}\right) / 3 & \tilde{y}_{\mu} v+\left(x_{2}^{\ell}+\omega y_{2}^{\ell}\right) / 3 & \left(x_{3}^{\ell}+\omega y_{3}^{\ell}\right) / 3 \\
\left(x_{1}^{\ell}+\omega^{2} y_{1}^{\ell}\right) / 3 & \left(x_{2}^{\ell}+\omega^{2} y_{2}^{\ell}\right) / 3 & \tilde{y}_{\tau} v+\left(x_{3}^{\ell}+\omega^{2} y_{3}^{\ell}\right) / 3
\end{array}\right)
$$

12 complex parameters

$$
V_{L}^{\ell(N L O)}=U(\omega)\left(\begin{array}{ccc}
1 & \lambda_{\ell}\left(\tilde{x}_{2}^{\ell}+\tilde{y}_{2}^{\ell}\right) & \lambda_{\ell}\left(\tilde{x}_{3}^{\ell}+\tilde{y}_{3}^{\ell}\right) \\
-\lambda_{\ell}\left(\tilde{x}_{2}^{\ell *}+\tilde{y}_{2}^{\ell *}\right) & 1 & \left.\lambda_{\ell} \tilde{x}_{3}^{\ell}+\omega \tilde{y}_{3}^{\ell}\right) \\
-\lambda_{\ell}\left(\tilde{x}_{3}^{\ell *}+\tilde{y}_{3}^{\ell *}\right) & -\lambda_{\ell}\left(\tilde{x}_{3}^{\ell *}+\omega^{2} \tilde{y}_{3}^{\ell *}\right) & 1
\end{array}\right)
$$

$\delta \equiv 2 \arctan \epsilon_{11}$
-Parameterizing $\mathrm{V}_{\mathrm{PMNS}}$ in terms of $\lambda_{\ell}=f_{\chi}^{\ell} C_{\chi} \simeq 0.05, \epsilon_{\nu} \simeq 0.08$

NLO Corrections to the PMNS matrix-(cont.)

$$
\begin{aligned}
& \theta_{13}^{N L O} \simeq \frac{e^{i \delta}-1}{\sqrt{6}}-\frac{\epsilon_{\nu}}{\sqrt{3}}+\frac{1-\omega e^{i \delta}}{\sqrt{6}}\left(\tilde{x}_{2}^{\ell}+\tilde{y}_{2}^{\ell}+\omega \tilde{x}_{3}^{\ell}+\omega \tilde{y}_{3}^{\ell}\right) \lambda_{\ell} \\
& \theta_{23}^{N L O} \simeq \frac{\omega e^{i \delta}-1}{\sqrt{6}}-\frac{\epsilon_{\nu}}{\sqrt{3}}+\frac{e^{i \delta}-1}{\sqrt{6}}\left(\tilde{x}_{2}^{\ell *}+\tilde{y}_{2}^{\ell *}\right) \lambda_{\ell}+\frac{1-\omega^{2} e^{i \delta}}{\sqrt{6}}\left(\tilde{x}_{3}^{\ell *}+\omega^{2} \tilde{y}_{3}^{\ell *}\right) \lambda_{\ell} \\
& \theta_{12}^{N L O} \simeq \frac{1}{\sqrt{3}}-\frac{\omega^{2}}{\sqrt{3}}\left(\tilde{x}_{2}^{\ell}+\tilde{y}_{2}^{\ell}\right) \lambda_{\ell}-\frac{\omega}{\sqrt{3}}\left(\tilde{x}_{3}^{\ell}+\tilde{y}_{3}^{\ell}\right) \lambda_{\ell}
\end{aligned}
$$

Current Neutrino oscillation data (Including Daya Bay and RENO) can still be explained with natural $\mathrm{O}(1)$ parameters!!!

Main Features of RS- A_{4} setup

Degenerate $\mathrm{C}_{\mathrm{L}}!!!$
EWPM

$M_{K K} \gtrsim 10 \mathrm{TeV}$ (In flavor anarchy)

Neutron EDM at 1-loop and HMFCNC $\left(C_{2,4}^{K, D}\right)$ at tree level, strongly suppressed.

Phenomenology-Dipole Operators

As a first step we work in the mass insertion approximation
-Flavor part of amplitude in terms of spurions $F_{Q}, F_{u, d}, \hat{Y}_{u, d}$
-IR Higgs vs. Bulk Higgs couplings $r_{n m}^{H \Phi(\chi)}\left(c_{Q_{i}}, c_{u_{j}, d_{j}}, \beta\right)$

$$
O_{7}^{\gamma}=\bar{q}_{L}^{i} \sigma^{\mu \nu} F_{\mu \nu} q_{R}^{j} \quad i=j=d(E D M)
$$

Dipole Operators (cont.)

$$
\begin{aligned}
&\left(C_{7 \gamma(8 g)}^{d-\text { type }}\right)_{i j}= \frac{m_{d_{i}} A^{1 L} f_{Q}^{2}}{v^{2} M_{K K}}\left[V_{R}^{d \dagger} \operatorname{diag}\left(f_{d, s, b}^{2}\right)\left(\hat{r}_{00}^{d}\right)^{-1} \tilde{r}_{01}^{d} \tilde{r}_{11}^{d}\left(\hat{r}_{00}^{d}\right)^{-1} V_{R}^{d}\right. \\
&\left.\times \operatorname{diag}\left(m_{d, s, b}^{2}\right) V_{R}^{d \dagger}\left(\hat{r}_{00}^{d}\right)^{-1} \hat{r}_{10}^{d} V_{R}^{d}\right]_{i j} \\
& \tilde{r}_{01}^{u, d} \tilde{r}_{11}^{u, d}=\hat{r}_{01}^{u, d} \hat{r}_{11}^{u, d}+\hat{r}_{01-+}^{u, d} \hat{r}_{1-+1}^{u, d} \rightarrow \text { Overlap corrections }
\end{aligned}
$$

Various levels of Approximation
$\left(V_{R}^{d}\right)_{L O}=1_{3 \times 3} \quad \Longrightarrow \mathrm{EDM}=0$
$\left(V_{R}^{d}\right)_{N L O}+$ Degenerate Overlaps $\square \mathrm{EDM}=0$
$\left(V_{R}^{d}\right)_{N L O}+$ Non degenerate Overlaps
$\left.\square E D M \sim \mathcal{O}\left(\left(m_{d} / m_{s}\right)^{2} f_{\chi}^{u, d} \Delta r\right)\right) \approx 10^{-29} e \cdot c m$

Dipole Operators (cont.)

Main drawback of spurion analysis \longrightarrow Failure to account for the explicit coupling to the various types (BC) of KK modes.

Second step- diag. of the 1 gen. KK mass matrix

$$
\begin{aligned}
& \left(\mathcal{A}_{i j}\right)_{D}^{\text {overlap }}=\frac{\left.\left(\sum_{n}\left(\hat{Y}_{K K}^{d_{i}}\right)_{1 n}^{\text {mass }}\left(\hat{Y}_{K K}^{d_{j}}\right)_{n 1}^{\text {mass }}\right)\right|_{\text {overlap }}}{M_{K K}^{(n) d_{j}}} \\
& \text { ational mixing effects } \square \text { Mass insertion approx. }
\end{aligned}
$$

(Agashe-Azatov-Zhu 2009, Gedalia-Isidori-Perez 2009)
Third step- Approximate analytical and numerical diag. of 3 gen. zero $+1^{\text {st }}$ KK mass matrices. (12×12)

The constraint of Zbb with running of Higgs mass
(Casagrande, Neubert et al. , 2010)

Most significant constraints from dipole operators

Conclusions

RS- $\mathrm{A}_{4} \Longrightarrow$ Vacuum Alignment, Flavor Hierarchy EW-Planck Hierarchy, CKM, TBM+..., Neutrino masses. Naturalness! EWPM constrain bulk masses!

Significant Relaxation of Pheno. constraints compared to flavor anarchy, due to degeneracy of $C_{L}!!!$ New constraints from LHCb, MEG, ATLAS, CMS,...

Possible extensions-
$P_{\text {LR }}$ extended Custodial Symm. \longrightarrow ZMA remains the same!
Larger (other...) flavor symmetries
"Soft Wall", Radion Phenomenology,...

Questions
 (...)

RS-A 4 contributions to $B_{s, d} \rightarrow \mu^{+} \mu^{-}$

$$
\begin{gathered}
\frac{B R\left(B_{s} \rightarrow \mu^{+} \mu-\right)_{N P}}{B R\left(B_{s} \rightarrow \mu^{+} \mu-\right)_{S M}}=\frac{\left|\left(Y_{Z}^{B}\right)^{V-A}\right|^{2}}{Y\left(M_{W}^{2} / m_{t}^{2}\right)} \\
B R\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{S M} \simeq 3.2 \pm 0.2 \times 10^{-9}
\end{gathered}
$$

(1-loop penguins and boxes are extremely suppressed)

$$
\begin{aligned}
& \left(Y_{Z}^{B}\right)^{V-A}=\frac{\left(-V_{t b}^{*} V_{t s}\right)^{-1}}{4 M_{Z}^{2} g_{S M}^{2}} \\
& g_{S M}^{2} \equiv \frac{G_{F} \alpha}{2 \sqrt{2} \pi \sin ^{2} \theta_{W}}
\end{aligned} \Delta_{L}^{\ell \ell}(\underbrace{Z)-\Delta_{R}^{\ell \ell}}_{\text {SM like }}(Z))(\underbrace{s b}_{\text {Extremely suppressed }} \underbrace{(Z)-\Delta_{R}^{s b}}_{\text {}}(Z))
$$

Double layer KK mixing
$\mathrm{BR}\left(\mathrm{B}_{s} \rightarrow \mu^{+} \mu^{-}\right)_{R S-A_{4}} \approx 3 \times 10^{-11}$
$\mathrm{BR}\left(\mathrm{B}_{d} \rightarrow \mu^{+} \mu^{-}\right)_{R S-A_{4}} \approx 2 \times 10^{-13}$

$$
\begin{aligned}
& \mathcal{L}^{4 D} \supset \hat{Y}_{i j}^{u, d} h_{0(4 D)}^{(, *)}\left[\psi_{Q_{i}}^{0 \dagger} f_{Q_{i}}^{-1} \psi_{u_{j}, d_{j}}^{0} f_{u_{j}, d_{j}}^{-1} r_{00}^{H}\left(c_{Q_{i}}, c_{u_{j}, d_{j}}, \beta\right)+\sum_{n} \psi_{Q_{i}}^{0 \dagger} f_{Q_{i}}^{-1} \psi_{u_{j}, d_{j}}^{n} r_{0 n}^{H}\left(c_{Q_{i}}, c_{u_{j}, d_{j}}, \beta\right)\right. \\
& +\sum_{n} \psi_{Q_{i}}^{0 \dagger} f_{Q_{i}}^{-1} \psi_{u_{j}, d_{j}}^{n_{j}^{-+}} r_{0 n^{-+}}^{H}\left(c_{Q_{i}}, c_{d_{j}, u_{j}}, \beta\right)+\sum_{n} \psi_{Q_{i}}^{n \dagger} \psi_{u_{j}, d_{j}}^{0} f_{u_{j}, d_{j}}^{-1} r_{n 0}^{H}\left(c_{Q_{i}}, c_{u_{j}, d_{j}}, \beta\right) \\
& +\sum_{n, m} \psi_{Q_{i}}^{n \dagger} \psi_{u_{j}, d_{j}}^{m} r_{n m}^{H}\left(c_{Q_{i}}, c_{u_{j}, d_{j}}, \beta\right)+\sum_{n, m} \psi_{Q_{i}}^{n^{--}}\left(\psi_{u_{j}, d_{j}}^{m^{-}}\right)^{\dagger} r_{n^{-} m^{-}}^{H}\left(c_{Q_{i}}, c_{u_{j}, d_{j}}, \beta\right) \\
& \left.+\sum_{n, m} \psi_{Q_{i}}^{n \dagger} \psi_{u_{j}, d_{j}}^{m^{-+}} r_{n m^{-+}}^{H}\left(c_{Q_{i}}, c_{d_{j}, u_{j}}, \beta\right)+\sum_{n, m} \psi_{Q_{i}}^{n^{--}}\left(\psi_{u_{j}, d_{j}}^{m^{+}}\right)^{\dagger} r_{n^{-} m^{+-}}^{H}\left(c_{Q_{i}}, c_{d_{j}, u_{j}}, \beta\right)\right] \\
& \hat{Y}_{i j}^{u(d)}=\frac{1}{v} r_{00}^{-1}\left(c_{Q_{i}}, c_{u_{j}\left(d_{j}\right)}, \beta\right)\left(F_{Q}^{-1} V_{L}^{u(d)} \operatorname{diag}\left(m_{u, c, t(d, s, b)}\right) V_{R}^{u(d) \dagger} F_{u(d)}^{-1}\right)_{i j} \\
& \left(C_{7 \gamma(8 g)}^{d-t y p e}\right)_{i j}=\frac{A_{1 L}}{v^{2} M_{K K}}\left[\left(V_{L}^{d}\right)_{i \ell}^{\dagger}\left(\hat{r}_{0 n}^{d}\right) \ell_{\ell_{1}}\left(\hat{r}_{00}^{d}\right)_{\ell_{1}}^{-1}\left(V_{L}^{d} \operatorname{diag}\left(m_{d, s, b}\right)\left(V_{R}^{d}\right)^{\dagger} \operatorname{diag}\left(f_{d, s, b}^{2}\right)\right)_{\ell_{1}}\right. \\
& \times\left(\hat{r}_{n m}^{d}\right)_{\ell_{2} \ell_{1}}\left(\hat{r}_{00}^{d}\right)_{\ell_{2} \ell_{1}}^{-1}\left(V_{R}^{d} \operatorname{diag}\left(m_{d, s, b}\right) V_{L}^{d \dagger} \operatorname{diag}\left(f_{Q 1, Q 2, Q 3}^{2}\right)\right)_{\ell_{1} \ell_{2}}\left(\hat{r}_{m 0}^{d}\right)_{\ell_{2} \ell_{3}} \\
& \left.\times\left(\hat{r}_{00}^{d}\right)_{\ell_{2} \ell_{3}}^{-1}\left(V_{L}^{d} \mathrm{diag}\left(m_{d, s, b}\right)\left(V_{R}^{d}\right)^{\dagger}\right)_{\ell_{2} \ell_{3}}\left(V_{R}^{d}\right)_{\ell_{3}, j}\right],
\end{aligned}
$$

A_{4} Simplifications

$$
\begin{gathered}
\hat{r}_{00,10,01}^{u, d}=\operatorname{diag}\left(r_{00,10,01}\left(c_{q}^{L}, c_{u_{i}, d_{i}}, \beta\right)\right) \quad \begin{array}{c}
\hat{r}_{11}^{u, d}=\operatorname{diag}\left(r_{11}\left(c_{u_{i}, d_{i}}, c_{q}^{L}, \beta\right)\right) \\
\hat{r}_{01-+}^{u, d}=\operatorname{diag}\left(r_{01-+}\left(c_{q}^{L}, c_{d_{j}, u_{j}}, \beta\right)\right) \quad \hat{r}_{1-d+1}^{u, d}=\operatorname{diag}\left(r_{1-+1}\left(c_{d_{i}, u_{i}}, c_{q}^{L}, \beta\right)\right) \\
\left(C_{7 \gamma(8 g)}^{d-t y p e}\right)_{i j}=\frac{m_{d_{i}} A^{1 L} f_{Q}^{2}}{v^{2} M_{K K}}\left[V_{R}^{d \dagger} \operatorname{diag}\left(f_{d, s, b}^{2}\right)\left(\hat{r}_{00}^{d}\right)^{-1} \tilde{r}_{01}^{d} \tilde{r}_{11}^{d}\left(\hat{r}_{00}^{d}\right)^{-1} V_{R}^{d} \operatorname{diag}\left(m_{d, s, b}\right)\right. \\
\left.\times \operatorname{diag}\left(m_{d, s, b}\right) V_{R}^{d \dagger}\left(\hat{r}_{00}^{d}\right)^{-1} \hat{r}_{10}^{d} V_{R}^{d}\right]_{i j} \\
B_{P}^{u, d}=\max \left(\left(\hat{r}_{00}^{u, d}\right)^{-3}\left(\hat{r}_{01}^{u, d} \hat{r}_{11}^{u, d}+\hat{r}_{01-+}^{u, d} \hat{r}_{1-+1}^{u, d}\right) \hat{r}_{10}^{u, d}\right)
\end{array} \quad \begin{array}{r}
\text { Near degeneracy } \\
\left(C_{7}^{d-t y p e}\right)_{i j}=\frac{A^{1 L} m_{d_{i}} m_{d_{j}} B_{P}^{d}}{v^{2} M_{K K}}\left[V_{R}^{d \dagger} \operatorname{diag}\left(f_{d_{1}, d_{2}, d_{3}}^{2}\right) V_{R}^{d} \operatorname{diag}\left(m_{d, s, b}\right) V_{L}^{d \dagger} \operatorname{diag}\left(f_{Q_{1}, Q_{2}, Q_{3}}^{2}\right) V_{L}^{d}\right]_{i j} \\
=\frac{A^{1 L} f_{Q}^{2} m_{d_{i}} m_{d_{j}}^{2} B_{P}^{d}}{v^{2} M_{K K}} \sum_{n=1}^{3}\left(V_{R}^{d}\right)_{n i}^{*}\left(V_{R}^{d}\right)_{n j} f_{d_{n}}^{2}
\end{array}
\end{gathered}
$$

1 generation KK Yukawa matrices

$$
\begin{aligned}
& \mathrm{Y}_{K K}^{d}=\left(\begin{array}{c}
\bar{Q}_{L}^{d(0)} \\
\bar{d}_{L}^{(1-)} \\
\bar{Q}_{L}^{d(1)} \\
\tilde{\tilde{d}}_{L}^{(1+-)}
\end{array}\right)^{T}\left(\begin{array}{cccc}
\breve{y}_{d} f_{q}^{-1} f_{d}^{-1} r_{00} & 0 & \breve{y}_{d} f_{q}^{-1} r_{01} & \breve{y}_{u} f_{q}^{-1} r_{101} \\
0 & \breve{y}_{d}^{*} r_{22} & 0 & 0 \\
\breve{y}_{d} f_{d}^{-1} r_{10} & 0 & \breve{y}_{d} r_{11} & \breve{y}_{u} r_{111} \\
0 & \breve{y}_{u}^{*} r_{222} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
d_{R}^{(0)} \\
Q_{R}^{d(1--)} \\
d_{R}^{(1)} \\
\tilde{d}_{R}^{\left(1^{-+}\right)}
\end{array}\right) \\
& \hat{Y}_{K K}^{d(h-)}=\left(\begin{array}{c}
\bar{Q}_{L}^{d(0)} \\
\bar{d}_{L}^{(1-)} \\
\bar{Q}_{L}^{d(1)} \\
\tilde{\tilde{d}}_{L}^{1^{+--}}
\end{array}\right)^{T}\left(\begin{array}{cccc}
-\breve{y}_{u} f_{q}^{-1} f_{u}^{-1} r_{00} & 0 & -\breve{y}_{u} f_{q}^{-1} r_{01} & -\breve{y}_{d} f_{q}^{-1} r_{101} \\
0 & \breve{y}_{d}^{*} r_{22} & 0 & 0 \\
-\breve{y}_{u} f_{u}^{-1} r_{10} & 0 & -\breve{y}_{u} r_{11} & -\breve{y}_{d} r_{111} \\
0 & \breve{y}_{u}^{*} r_{222} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
u_{R}^{(0)} \\
Q_{R}^{u\left(1^{--}\right)} \\
u_{R}^{(1)} \\
\tilde{u}_{R}^{(1-+)}
\end{array}\right) \\
& \hat{Y}_{K K}^{d\left(h_{+}\right)}=\left(\begin{array}{c}
\bar{Q}_{L}^{u(0)} \\
\bar{u}_{L}^{\left.1^{--}\right)} \\
\bar{Q}_{L}^{u(1)} \\
\tilde{u}_{L}^{1+-)}
\end{array}\right)^{T}\left(\begin{array}{cccc}
\breve{y}_{d} f_{q}^{-1} f_{d}^{-1} r_{00} & 0 & \breve{y}_{d} f_{q}^{-1} r_{01} & \breve{y}_{u} f_{q}^{-1} r_{101} \\
0 & -\breve{y}_{u}^{*} r_{22} & 0 & 0 \\
\breve{y}_{d} f_{d}^{-1} r_{10} & 0 & \breve{y}_{d} r_{11} & \breve{y}_{u} r_{111} \\
0 & -\breve{y}_{d}^{*} r_{222} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
d_{R}^{(0)} \\
Q_{R}^{d\left(1^{--}\right)} \\
d_{R}^{(1)} \\
\tilde{d}_{R}^{(1-+)}
\end{array}\right)
\end{aligned}
$$

4X4 one gen. KK mass matrix

$$
\begin{aligned}
& \frac{\hat{\mathbf{M}}_{d}^{K K}}{\left(M_{K K}\right)}=\left(\begin{array}{c}
\bar{Q}_{L}^{d(0)} \\
\bar{d}_{L}^{\left(1^{--}\right)} \\
\bar{Q}_{L}^{d(1)} \\
\tilde{\tilde{d}}_{L}^{\left(1^{+-}\right)}
\end{array}\right)^{T}\left(\begin{array}{cccc}
\breve{y}_{d} f_{q}^{-1} f_{d}^{-1} r_{00} x & 0 & \breve{y}_{d} f_{q}^{-1} r_{01} x & \breve{y}_{u} f_{q}^{-1} r_{101} x \\
0 & \breve{y}_{d}^{*} r_{22} x & 1 & 0 \\
\breve{y}_{d} f_{d}^{-1} r_{10} x & 1 & \breve{y}_{d} r_{11} x & \breve{y}_{u} r_{111} x \\
0 & \breve{y}_{u}^{*} r_{222} x & 0 & 1
\end{array}\right)\left(\begin{array}{c}
d_{R}^{(0)} \\
Q_{R}^{d\left(1^{--}\right)} \\
d_{R}^{(1)} \\
\tilde{d}_{R}^{(1-+)}
\end{array}\right) \\
& \breve{y}_{u, d} \equiv\left(\hat{y}_{u, d}^{L O}\right)_{11} v_{\Phi}^{4 D} e^{k \pi R} / k
\end{aligned}
$$

12X12 three gen. KK mass matrix

$$
\hat{\mathbf{M}}_{F u l}^{D}=M_{K K}\left(\begin{array}{ccc}
\hat{\mathbf{M}}_{d}^{K K} / M_{K K} & x \hat{Y}_{K K}^{s}\left(\hat{y}_{12}^{L O}, f_{s}\right) & x \hat{Y}_{K K}^{b}\left(\hat{\hat{y}_{1}^{L O}}, f_{b}\right) \\
x \hat{Y}_{K K}^{d}\left(\hat{y}_{21}^{L}, f_{d}\right) & \hat{\Lambda}_{s}^{K K} / M_{K K} & x \hat{Y}_{K K}^{K}\left(\hat{y}_{23}^{L O}, f_{b}\right) \\
x \hat{Y}_{K K}^{d}\left(\hat{y}_{31}^{L O}, f_{d}\right) & x \hat{Y}_{K K}^{s}\left(\hat{y}_{32}^{L}, f_{s}\right) & \hat{\mathbf{M}}_{b}^{K K} / M_{K K}
\end{array}\right)
$$

$O_{L}^{s_{K K}}$

One example of KK diag. matrix

12X12 additional A_{4} rotation

Dynamical Completion Issues

- Vacuum Alignment - We will have to make sure that the scalar potential doesn't ruin the specific VEV structure we are interested in.
- Most importantly in any flavor model one should explain the origin of quark and lepton masses and their hierarchy (FN, GUT's, WED, UED etc....).
- Ultimately, a dynamical origin for the A_{4} symmetry should be supplemented.
- One of the possibilities is obtaining A_{4} via compactification of a 6 dimensional flat space on an orbifold T_{2} / Z_{2}. The various fields reside on the four orbifold fixed points (Branes).

Off diagonal CKM elements

$$
\begin{gathered}
V_{u s}=-V_{c d}^{*} \simeq\left(\left(\tilde{x}_{2}^{d}+\tilde{y}_{2}^{d}\right) f_{\chi}^{s}-\left(\tilde{x}_{2}^{u}+\tilde{y}_{2}^{u}\right) f_{\chi}^{c}\right) \\
V_{c b}=-V_{t s}^{*} \simeq\left(\left(\tilde{x}_{3}^{d}+\omega \tilde{y}_{3}^{d}\right) f_{\chi}^{b}-\left(\tilde{x}_{3}^{u}+\omega \tilde{y}_{3}^{u}\right) f_{\chi}^{t}\right) \\
V_{u b}=-V_{t d}^{*} \simeq\left(\left(\tilde{x}_{3}^{d}+\tilde{y}_{3}^{d}\right) f_{\chi}^{b}-\left(\tilde{x}_{3}^{u}+\tilde{y}_{3}^{u}\right) f_{\chi}^{t}\right) \\
\mathrm{V}_{C K M}=\left(\begin{array}{ccc}
1 & V_{u s} & V_{u b} \\
-V_{u s}^{*} & 1 & V_{c b} \\
-V_{u b}^{*} & -V_{c b}^{*} & 1
\end{array}\right) \\
\mathcal{H}=\left(\begin{array}{ll}
H & \tilde{H}
\end{array}\right)=\left(\begin{array}{cc}
h_{0}^{*} & h_{+} \\
-h_{+}^{*} & h_{0}
\end{array}\right) \quad h_{0}(x, y)=v_{H}\left(\beta_{H}, y\right)+\sum_{n} h_{0}^{(n)}(x) \phi_{n}(y)
\end{gathered}
$$

ZMA RH diag. Matrices

$$
\begin{gathered}
V_{R}^{q}=\left(\begin{array}{ccc}
1 & \Delta_{1}^{q} & \Delta_{2}^{q} \\
-\left(\Delta_{1}^{q}\right)^{*} & 1 & \Delta_{3}^{q} \\
-\left(\Delta_{2}^{q}\right)^{*} & -\left(\Delta_{3}^{q}\right)^{*} & 1
\end{array}\right) \\
\Delta_{1}^{q}=\frac{m_{q_{1}}}{m_{q_{2}}}\left[f_{\chi}^{q_{1}}\left(\left(\tilde{x}_{1}^{q}\right)^{*}+\omega^{2}\left(\tilde{y}_{1}^{q}\right)^{*}\right)+f_{\chi}^{q_{2}}\left(\tilde{x}_{2}^{q}+\tilde{y}_{2}^{q}\right)\right] \\
\Delta_{2}^{q}=\frac{m_{q_{1}}}{m_{q_{3}}}\left[f_{\chi}^{q_{1}}\left(\left(\tilde{x}_{1}^{q}\right)^{*}+\omega\left(\tilde{y}_{1}^{q}\right)^{*}\right)+f_{\chi}^{q_{3}}\left(\tilde{x}_{3}^{q}+\tilde{y}_{3}^{q}\right)\right] \\
\Delta_{3}^{q}=\frac{m_{q_{2}}}{m_{q_{3}}}\left[f_{\chi}^{q_{2}}\left(\left(\tilde{x}_{2}^{q}\right)^{*}+\omega\left(\tilde{y}_{2}^{q}\right)^{*}\right)+f_{\chi}^{q_{3}}\left(\tilde{x}_{3}^{q}+\omega \tilde{y}_{3}^{q}\right)\right]
\end{gathered}
$$

The Tetrahedral Group A_{4}

- $A(4)$ is the group of even permutations of 4 objects
- It is also isomorphic to the symmetry group of a regular tetrahedron, and is a subgroup of SO (3)
- Other extensions include:

$$
\mathrm{T}^{\prime} \Delta(27) \quad \Sigma(81)
$$

- Will be used to explain proximity of mixing in the lepton sector to TBM, and proximity of mixing in the quark sector to unity.
- Differs from other types of flavor models: "Anarchic", continuous flavor groups, GUT's, (SUSY),...

Some A(4) Basic properties:

-A(4) has one real triplet, $\underline{3}$ and three "singlets": $\underline{1}, \underline{1}$ ' and $\underline{\underline{1}}$ "
$\underline{3} \otimes \underline{3}=\underline{3}_{s} \oplus \underline{3}_{a} \oplus \underline{1} \oplus \underline{1}^{\prime} \oplus \underline{1}^{\prime \prime}$, and $\underline{1}^{\prime} \otimes \underline{1}^{\prime}=\underline{1}^{\prime \prime}$
$\left(\underline{3} \otimes \underline{3}_{)_{s}}=\left(x_{2} y_{3}+x_{3} y_{2}, x_{3} y_{1}+x_{1} y_{3}, x_{1} y_{2}+x_{2} y_{1}\right)\right.$,
$(\underline{\mathbf{3}} \otimes \underline{\mathbf{3}})_{\mathbf{3}_{a}}=\left(x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}\right)$,
$(\underline{\mathbf{3}} \otimes \underline{3})_{\underline{1}}=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$,
$\left(\underline{\mathbf{3}} \otimes \underline{3} \underline{1}^{\prime}=x_{1} y_{1}+\omega x_{2} y_{2}+\omega^{2} x_{3} y_{3}, \quad \omega=e^{i 2 \pi / 3}\right.$
$\left(\underline{\mathbf{3}} \otimes \underline{\mathbf{3}}_{\underline{1}^{\prime \prime}}=x_{1} y_{1}+\omega^{2} x_{2} y_{2}+\omega x_{3} y_{3}\right.$,

A simple $A(4)$ Model

(Ma, Feruglio, Altarelli, Babu, Volkas...)
-We assign the SM fermions to the following representations:

$$
\begin{array}{lc}
Q_{L} \sim\left(3,2, \frac{1}{3}\right)(\underbrace{\mathbf{3}}) \text { Under A(4) } & \ell_{L} \sim(1,2,-1)(\underline{\mathbf{3}}) \\
\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \mathrm{S} & \\
u_{R} \oplus u_{R}^{\prime} \oplus u_{R}^{\prime \prime} \sim\left(3,1, \frac{4}{3}\right)\left(\underline{\mathbf{1}} \oplus \underline{\mathbf{1}}^{\prime} \oplus \underline{1}^{\prime \prime}\right) & \nu_{R} \sim(1,1,0)(\underline{\mathbf{3}}) \\
d_{R} \oplus d_{R}^{\prime} \oplus d_{R}^{\prime \prime} \sim\left(3,1,-\frac{2}{3}\right)\left(\underline{1} \oplus \underline{\mathbf{\prime}}^{\prime} \oplus \underline{1}^{\prime \prime}\right) & e_{R} \oplus e_{R}^{\prime} \oplus e_{R}^{\prime \prime} \sim(1,1,-2)\left(\underline{\mathbf{1}} \oplus \underline{\mathbf{1}}^{\prime} \oplus \underline{1}^{\prime \prime}\right)
\end{array}
$$

-The scalar sector of this model will be given by:

$$
\Phi \sim(1,2,-1)(\underline{3}), \quad \phi \sim(1,2,-1)(\underline{1}), \quad \chi \sim(1,1,0)(\underline{3}) .
$$

-We will also need an additional $U(1)$ symmetry which will be explicitly broken to Z_{2} under which ϕ, χ and Q_{L} are odd and the rest of the fields are even.
-The Yukawa Lagrangian is:

$$
\begin{aligned}
& \mathcal{L}_{\text {Yuk }}=\lambda_{u}\left(\bar{Q}_{L} \Phi\right)_{\underline{1}} u_{R}+\lambda_{u}^{\prime}\left(\bar{Q}_{L} \Phi\right)_{\underline{1}^{\prime}} u_{R}^{\prime \prime}+\lambda_{u}^{\prime \prime}\left(\bar{Q}_{L} \Phi\right)_{\underline{1}^{\prime \prime}} u_{R}^{\prime}+ \\
& +\lambda_{d}\left(\bar{Q}_{L}{ }^{\tilde{\Phi}}\right)_{\underline{1}} d_{R}+\lambda_{d}^{\prime}\left(\bar{Q}_{L}{ }^{\tilde{S}} \underline{1}_{\underline{1}} d_{R}^{\prime \prime}+\lambda_{d}^{\prime \prime}\left(\bar{Q}_{L} \tilde{S}_{\underline{1}^{\prime \prime}} d_{R}^{\prime}+\right.\right. \\
& +\lambda_{\nu}\left(\bar{\ell}_{L} \nu_{R}\right) \underline{1}^{\phi}+M\left[\bar{\nu}_{R}\left(\nu_{R}\right)^{c} \underline{1}_{\underline{1}}+\lambda_{\chi}\left[\bar{\nu}_{R}\left(\nu_{R}\right)^{c} \underline{3}_{s} \cdot \chi+\right.\right. \\
& +\lambda_{e}\left(\bar{\ell}_{L} \tilde{\Phi}^{\underline{\Phi}} \underline{1}^{e_{R}}+\lambda_{e}^{\prime}\left(\bar{\ell}_{L} \tilde{\Phi}\right)_{\underline{1}^{\prime}} e_{R}^{\prime \prime}+\lambda_{e}^{\prime \prime}\left(\bar{\ell}_{L} \tilde{\Phi}\right)_{\underline{1}^{\prime \prime}}{ }^{\prime}+h . c .\right.
\end{aligned}
$$

-And the resulting mass matrix in each sector, $\mathrm{f}=(\mathrm{u}, \mathrm{d}, \mathrm{e})$:

$$
\left(\bar{f}_{L}, \bar{f}_{2 L}, \bar{f}_{3 L}\right)\left(\begin{array}{ccc}
\lambda v_{1} & \lambda^{\prime} v_{1} & \lambda^{\prime \prime} v_{1} \\
\lambda v_{2} & w \lambda^{\prime} v_{2} & w^{\prime} \lambda^{\prime} v_{2} \\
\lambda v_{3} & w^{2} \lambda_{3} & \omega \lambda^{\prime} v_{3}
\end{array}\right)\left(\begin{array}{l}
f_{R} \\
f_{R}^{\prime \prime} \\
f_{R}^{\prime \prime}
\end{array}\right)+h . c .
$$

The Neutrino Sector

- From the Yukawa Lagrangian we get that the Dirac and the bare Majorana mass matrices are proportional to the identity:

$$
M_{\nu}^{D}=\lambda_{\nu} v_{\phi} 1 \equiv m_{\nu}^{D} 1 \quad \text { and } \quad M_{\nu \text { Bare }}^{M a j}=M 1
$$

The required non-trivial structure is supplied by the Yukawa coupling to the field, χ, which turns out to be:
$\lambda_{\chi}\left(\bar{\nu}_{1 R}, \bar{\nu}_{2 R}, \bar{\nu}_{3 R}\right)\left(\begin{array}{ccc}0 & \chi_{3} & \chi_{2} \\ \chi_{3} & 0 & \chi_{1} \\ \chi_{2} & \chi_{1} & 0\end{array}\right)\left(\begin{array}{c}\left(\nu_{1 R}\right)^{c} \\ \left(\nu_{2 R}\right)^{c} \\ \left(\nu_{3 R}\right)^{c}\end{array}\right)$
\cdot Inserting the VEV of χ the resulting 6×6 mass matrix is:

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & m_{\nu}^{D} & 0 & 0 \\
0 & 0 & 0 & 0 & m_{\nu}^{D} & 0 \\
0 & 0 & 0 & 0 & 0 & m_{\nu}^{D} \\
m_{\nu}^{D} & 0 & 0 & M & 0 & M_{\chi} \\
0 & m_{\nu}^{D} & 0 & 0 & M & 0 \\
0 & 0 & m_{\nu}^{D} & M_{\chi} & 0 & M
\end{array}\right) \quad M_{\chi} \equiv \lambda_{\chi} v_{\chi}
$$

- In the see-saw limit, $|M|,\left|M_{\chi}\right| \gg m_{\nu}^{D}$ the effective 3×3 mass matrix for the light neutrinos is given by:

$$
M_{L}=-M_{\nu}^{D} M_{R}^{-1}\left(M_{\nu}^{D}\right)^{T}=-\frac{\left(m_{\nu}^{D}\right)^{2}}{M}\left(\begin{array}{ccc}
\frac{M^{2}}{M^{2}-M_{\chi}^{2}} & 0 & -\frac{M M_{\chi}}{M^{2}-M_{\chi}^{2}} \\
0 & 1 & 0 \\
-\frac{M M_{\chi}}{M^{2}-M_{\chi}^{2}} & 0 & \frac{M^{2}}{M^{2}-M_{\chi}^{2}}
\end{array}\right)
$$

-The diagonalization matrix turns out to be : $V_{L}^{\nu}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & \sqrt{2} & 0 \\ 1 & 0 & 1\end{array}\right)$
-So the MNSP matrix at this order is Tri-bi-maximal:

$$
V_{M N S P}=V_{L}^{e \dagger} V_{L}^{\nu}=U(\omega)^{\dagger} V_{L}^{\nu}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{\omega}{\sqrt{6}} & \frac{\omega}{\sqrt{3}} & -\frac{e^{i \pi / 6}}{\sqrt{2}} \\
-\frac{\omega^{2}}{\sqrt{6}} & \frac{\omega^{2}}{\sqrt{3}} & \frac{e^{-i \pi / 6}}{\sqrt{2}}
\end{array}\right)
$$

