

The high-precision Penning trap mass spectrometer PENTATRAP

June 18th 2012

5th International Symposium on Symmetries in Subatomic Physics Groningen, The Netherlands

Andreas Dörr^{1,2}

K. Blaum^{1,2}, Ch. Böhm^{1,2,3}, J. Crespo Lopez-Urrutia¹, S. Eliseev¹,
 M. Goncharov^{1,2}, C. Hökel-Schmöger^{1,2}, Yu. N. Novikov^{3,4}, J. Repp^{1,2}, C. Roux^{1,2}, S. Sturm¹, S. Ulmer^{1,5}

¹Max-Planck-Institut für Kernphysik, Heidelberg, Germany

²Fakultät für Physik und Astronomie, Ruprecht-Karls-Universität, Heidelberg, Germany

³Extreme Matter Institute EMMI, Helmholtz Gemeinschaft, Darmstadt, Germany

⁴Petersburg Nuclear Physics Institute, Gatchina, Russia

⁵RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama, Japan

The physics program at PENTATRAP

Q-values for neutrino physics

 β -decay ${}^{3}H \rightarrow {}^{3}He^{+} + e^{-} + \overline{v}_{e}$

part of total decay energy Q required for neutrino mass

measure:

- e⁻-spectrum:
- Q-value (independently): THe-Trap

KATRIN

Q-values for neutrino physics

 β -decay ${}^{3}H \rightarrow {}^{3}He^{+} + e^{-} + \overline{\mathcal{V}}_{e}$

part of total decay energy Q required for neutrino mass

alternative: β -decay ¹⁸⁷Re \rightarrow ¹⁸⁷Os⁺ + e⁻ + $\overline{\nu}_e$ measure:

MARE

- spectrum:
- Q-value (independently): PENTATRAP

Penning traps

Lorentz force

homogeneous B-field

axial and

magnetron

modified cyclotron

$$v_{+} = \frac{v_{c}}{2} + \sqrt{\frac{v_{c}^{2}}{4} - \frac{v_{z}^{2}}{2}}$$

modified cyclotron

$$v_{z} = \frac{1}{2\pi} \sqrt{\frac{qU_{0}}{md^{2}}}$$
axial

$$d^{2} = \frac{1}{2} \left(z_{0}^{2} + \frac{\rho_{0}^{2}}{2} \right)$$

magnetron

Invariance theorem $v_c = \sqrt{v_+^2 + v_z^2 + v_-^2}$ L. S. Brown, G. Gabrielse, Phys. Rev. A 25, 2423 (1982)

PENTATRAP Overview

- superconducting 7 T magnet
- cold bore with 160mm diameter
- spacial homogeneity: 0.7 ppm in central cm³, 44 ppm in trap volume
- temporal stability: <10⁻⁹/h
- pressure and He-level stabilization
- vibration damped
- earth field fluctuation correction with large Helmholtz coils and fluxgate sensor

Electron Beam Ion Trap (EBIT)

 \rightarrow production of highly charged ions

example: production of highly-charged Osmium

- trapping time: 800ms
- electron current: 30 mA
- electron energy: 7.9 keV

commercial Dresden-EBIT3

Electron Beam Ion Trap (EBIT)

Second experimental phase

- collaboration with group of J. R. Crespo López-Urrutia
- He-like up to Bi (q = 81+)
- bare up to Ba (q = 56+)
- upgrade will give bare U (soon)

e.g.: A. González Martínez et al., Phys. Rev. A 73, 052710 (2006)

Traps and cryogenic assembly

- 5 traps
- traps are compensated and orthogonal
- gold plated OFHC copper electrodes
- sapphire spacers
- 3 µm machining precision

ring

spacer electrode

C.Roux et al., Appl. Phys. B, doi:10.1007/s00340-011-4825-4(2012)

1

4

 \rightarrow cyclotron frequency

B not precisely known

 $\xrightarrow{\mathbf{v}}$ take the ratio

$$\frac{v_{c,1}}{v_{c,2}} = \frac{m_2}{m_1} \frac{B(t_1)}{B(t_2)}$$

 $v_c =$

 $1 \quad q_1 B$

 m_1

 2π

temporal B-fluctuations

 \rightarrow simultaneous

$$\frac{v_{c,1}}{v_{c,2}} = \frac{m_2}{m_1} \frac{B_3}{B_2}$$

How to measure trap frequencies

Setup for detection of image currents of a single ion

Detector signal

(sketch)

Max-Planck-Institut für Kernphysik

Example: Cryogenic axial detector

Superconducting toroidal coil

GaAs-FET based amplifier

Two cryogenic axial detectors

Axial detector performance

Thermal noise resonance

On resonance effective $R_{_{D}}$ of ~100 $M\Omega$

- \rightarrow single ion dip detection possible
- \rightarrow fast cooling to detector temperature (4K)

 Stored and Cooled lons Division Max-Planck-Institute for nuclear physics

Max-Planck-Institut für Kernphysik

MAX-PLANCK-GESELLSCHAFT

• Funding

Deutsche Forschungsgemeinschaft DFG

DFG BL981/2-1

adv. grant MEFUCO (# 290870)

Helmholtz Alliance (HA 216)

Thank you for your attention!

