

Dr. Julian Berengut

SSP2012, Groningen 20 June 2012 Optical transitions in highly charged ions for atomic clocks with enhanced sensitivity to variation of fundamental constants

Motivation

Do the laws of physics change over space-time?Do the fundamental constants change?

- Around 25 dimensionless "fundamental constants": Coupling constants, dimensionless mass ratios, mixing angles. e.g. $\alpha, \alpha_s, \theta_w, \frac{m_e}{\Lambda_{QCD}}, \frac{m_q}{\Lambda_{QCD}}, \dots$
- ...plus some for General Relativity and Cosmology....
- Cannot be predicted by theory and must be measured.
- Should not assume constancy or homogeneity.

Light from Distant Quasars

Δα

 $\Delta \alpha < 0$ Negative-shifted Spectra $\Delta \alpha = 0$ Lab-Observed Spectra $\Delta \alpha > 0$ Positive-shifted Spectra

Generated lpha -dipole data

Terrestrial α -variation

$$\frac{\dot{\alpha}}{\alpha} = 1.35 \times 10^{-18} \cos \theta \, yr^{-1}$$
$$\frac{\Delta \alpha}{\alpha} = 1.4 \times 10^{-20} \cos \omega t$$

Berengut & Flambaum, EPL 97, 20006 (2012)

α -sensitivity of single-electron transitions

Hydrogen-like ions

$$E_n = -\frac{m_e Z^2 e^4}{2\hbar^2 n^2} = -\frac{(Z\alpha)^2}{2n^2} \cdot m_e c^2$$

Relativistic corrections

$$\Delta_n = E_n \frac{(Z\alpha)^2}{\nu \left(j + \frac{1}{2}\right)}$$
$$\omega = \omega_0 + qx, \qquad x = \left(\frac{\alpha}{\alpha_0}\right)^2 - 1$$

Optical atomic clocks

- **R**equired limit :
- Best current limit (Hg⁺ vs Al⁺) :
 Rosenband et al., Science 319, 1808 (2008)

$$y_n = E_n \frac{(Z\alpha)^2}{\nu\left(j + \frac{1}{2}\right)}$$

• Hg⁺ clock : $5d^{10}6s (J = \frac{1}{2}) \rightarrow 5d^{9}6s^{2} (J = \frac{5}{2})$ $\omega = 35514 \ cm^{-1}$ $q = -52200 \ cm^{-1}$

 $\frac{\dot{\alpha}}{\alpha} \sim 10^{-19} yr^{-1}$ $\frac{\dot{\alpha}}{\alpha} = (-1.6 \pm 2.3) \times 10^{-17} yr^{-1}$

Dzuba, Flambaum, Webb, PRL 82, 888 (1999); Dzuba & Flambaum, PRA 77, 012515 (2008)

Optical atomic clocks

- **R**equired limit :
- Best current limit (Hg⁺ vs Al⁺) :
 Rosenband et al., Science 319, 1808 (2008)

 $q_{n} = E_{n} \frac{(Z\alpha)^{2}}{\nu \left(j + \frac{1}{2}\right)}$ • Hg⁺ clock : $5d^{10}6s \left(J = \frac{1}{2}\right) \rightarrow 5d^{9}6s^{2} \left(J = \frac{5}{2}\right)$ $\omega = 35514 \ cm^{-1}$ $q = -52200 \ cm^{-1}$

Dzuba, Flambaum, Webb, PRL 82, 888 (1999); Dzuba & Flambaur

Clock q-values (cm⁻¹)

Where to find two orders of magnitude?

Relative enhancement : Dy clock

Dzuba, Flambaum, Webb, PRL 82, 888 (1999); Dzuba & Flambaum, PRA 77, 012515 (2008)

Relative enhancement : Dy clock

 $\begin{array}{c} q = 8000 \ cm^{-1} \\ 4f^{10}5d6s \ (J = 10) \\ \omega = 19797.96 \ cm^{-1} \\ q = -25000 \ cm^{-1} \\ 4f^{10}6s^2 \ (J = 8) \end{array}$

$$\frac{\dot{\alpha}}{\alpha} = (-2.7 \pm 2.6) \times 10^{-15} \, yr^{-1}$$

Problem: natural linewidths are not small

Cingöz et al., PRL 98, 040801 (2007)

Absolute Enhancement

$$q_n = E_n \frac{(Z\alpha)^2}{\nu\left(j + \frac{1}{2}\right)}$$

- $E_n = -$ Ionisation energy
- Use highly charged ions

$$\rightarrow q \sim Z^2 (Z_{ion} + 1)^2$$

Problem: transition frequencies also grow with E_n

Absolute Enhancement

 $q_n = E_n \frac{(Z\alpha)^2}{\nu \left(j + \frac{1}{2}\right)}$

- $E_n = -$ Ionisation energy
- Use highly charged ions

$$\rightarrow q \sim Z^2(Z_{ion} -$$

Problem: transition frequencies also grow with E_n

Ag isoelectronic sequence

 $[Kr]4d^{10} nl$ (47 electrons)

Ag isoelectronic sequence

 $[Kr]4d^{10} nl (47 \text{ electrons})$

Berengut, Dzuba, Flambaum, PRL 105, 120801 (2010)

Ag isoelectronic sequence $[Kr]4d^{10} nl (47 \text{ electrons})$ 0 Shopping List α -sensitivit) ω -100 Large nuclear charge (eV)Difference in -200 ncreasing configuration En -300 Use s-wave High ionisation degree -400 En~(Zion+1)2 50 Better: Sm¹⁴⁺ Berengut, Dzuba, Flambaum, PRL 105, 120801 (2010)

nd

5s

4f

Clock q-values (cm⁻¹)

Berengut, Dzuba, Flambaum, PRL 105, 120801 (2010)

Holes in highly charged ions

- Use highly charged ions
- Electrons in filled shells have maximal I_n
- Electron spends half time closer to nucleus than other electrons in the same shell

 $q \sim I_n^{3/2}$

• Use holes in otherwise filled shells

Berengut, Dzuba, Flambaum, Ong, PRL 106, 210802 (2011)

Holes in highly charged ions

- Use highly charged ions \odot
- Electrons in filled shells have maximal I_n
- Electron spends half time closer to nucleus than other electrons in the same shell

<u>rerer</u>ere

Shopping List

Large nuclear charge

Difference in

Use s-wave

High ionisation degree

En~(Zion+1)2

Nearly filled shells

configuration

 $q \sim I_n^{3/2}$

• Use holes in otherwise filled shells

Berengut, Dzuba, Flambaum, Ong, PRL 106, 210802 (2011)

Sm isoelectronic sequence $[Kr]4d^{10} 4f^{14} 5s^2$ (62 electrons)

Berengut, Dzuba, Flambaum, Ong, PRL 106, 210802 (2011)

Sm isoelectronic sequence $[Kr]4d^{10} 4f^{14} 5s^2$ (62 electrons)

Clock q-values (cm⁻¹)

Berengut, Dzuba, Flambaum, Ong, PRL 106, 210802 (2011)

Holes in highly charged ions : Ir¹⁷⁺

• There exists an E1 transition at 45 000 cm⁻¹ for trapping and cooling

Berengut, Dzuba, Flambaum, Ong, PRL 106, 210802 (2011)

Finding optical transitions in highly charged ions

Periodic Table Filling	Coulomb Filling
1s	1s
2s	2s
$2\mathbf{p}$	$2\mathbf{p}$
3s	3s
3p	3р
4s —	
3d	\longrightarrow 4s
$4\mathrm{p}$	$4\mathrm{p}$
5s —	
4d	4f
5p	5s
6s	$\longrightarrow 5p$
4f	5 d
5d	5 f
6р — —	6s
7s	6 p
5f	- 6d
6d	6f
	7s

Finding optical transitions in highly charged ions

1 H 1.00794																1 H 1.00794	He 4.002602
³ Li 6.941	4 Be 9.012182											⁵ B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20,1797
11 Na 22.989770	12 Mg 24.3050			2				24				13 Al 26.98153	14 Si 8 28.0855	15 P 30.97376	16 S 1 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	²⁹ Cu 63.540	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	³⁴ Se _{78.96}	35 Br 79.904	³⁶ Kr ^{83.80}
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.86	48 Cd 112.41	1 114.81	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.960	80 Hg	81 Tl 204.383	82 Pb 207.2	83 Bi 208.9803	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	111 (272)	112 (277)		114 (289) (287)		116 (289)		118 (293)
58 59 60 61 62 63 64 65 66 67 68 69 70 71																	
			$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Nd] 44.24 (Pm Sm (145) 150.36		Eu 51.964 95	Gd 157.25 1	Tb 158.92534 97	Dy 162.50 1 98	Ho 64.93032 1	Er 67.26 10	Tm 168.93421	Yb I 173.04 17	74.967	
			23	Th 2.0381 231	Pa .03588 23	U 8.0289	Np (237)	Pu (244)	Am (243)	Cm (247)	Bk (247)	Cf (251)	Es [Fm [Md [258]	No] (259) (2	L T 262)

Tl isoelectronic sequence

 $[Xe] 4f^{14}5d^{10}6s^2 : nl$ (81 electrons)

Berengut, Dzuba, Flambaum, Ong, arXiv: 1204.0603 (2012)

Tl isoelectronic sequence

 $[Xe] 4f^{14}5d^{10}6s^2 : nl$ (81 electrons)

Legend 5f ----- 6p_{3/2} ---- 6p_{1/2}

Clock q-values (cm⁻¹)

Berengut, Dzuba, Flambaum, Ong, arXiv: 1204.0603 (2012)

HCI Clock Scaling Laws and Systematics

- 2nd order Stark shift
- Blackbody shift
- 2nd order Zeeman shift
- Electric quadrupole shift
- Fine-structure
- Hyperfine A coefficient

- ~ $1/(Z_{ion}+1)^4$
- ~ $1/(Z_{ion}+1)^4$
- ~ suppressed as $1/\Delta E$
- ~ $1/(Z_{ion}+1)^2$
- ~ $Z^2 (Z_{ion} + 1)^2 / v^3$
- ~ $Z (Z_{ion}+1)^2/v^3$

Thank you

Collaborators: Victor Flambaum, Vladimir Dzuba, Andrew Ong, Samuel Bladwell, Lisa Kava, Mikhail Kozlov, Sergey Porsev, Vladimir Dmitriev, John Webb, Julian King, Michael Murphy, Steve Curran, Elliot Koch