Search for electron EDM in laser-cooled francium factory

<u>Cyclotron and radioisotope center (CYRIC) Tohoku Univ.</u> Hirokazu Kawamura

- 1. Physics motivation
 - EDM search
 - Laser cooled Fr
- 2. Francium factory
 - Thermal ionizer
 - Magneto-optical trap
 - Ion-atom converter
- 3. Summary and plan

<u>Collaborators</u>

T. Aoki, <u>H. Arikawa</u>, <u>S. Ezure</u>, T. Furukawa, <u>K. Harada</u>,
A. Hatakeyama, K. Hatanaka, <u>T. Hayamizu</u>,
K. Imai, <u>T. Inoue</u>, <u>T. Ishikawa</u>, <u>M. Itoh</u>, <u>T. Kato</u>,
T. Murakami, <u>H.S. Nataraj</u>, <u>T. Sato</u>, Y. Shimizu,
T. Wakasa, H.P. Yoshida and <u>Y. Sakemi</u>.

<u>CYRIC</u>; Univ. of Tokyo; TMU; TAT; RCNP; JAEA; Kyoto Univ.; Tohoku Univ.; Kyusyu Univ.;

SSP2012 – 5th International Symposium on Symmetries in Subatomic Physics 18-22 June 2012, KVI, Groningen, the Netherlands

Electric Dipole Moment (EDM)

Journey of e-EDM search

An electron EDM can induce a net atomic EDM.

→ The net EDM of a heavy atom can be many times larger than the electron EDM.

No experimental result of EDM search for cooled/trapped radioactive atoms

Francium

Heaviest alkali metal = Francium :

⇒simple electronic structure and large nucleus ⇒Enhancement of EDM: $Z=87 \rightarrow K\sim 10^3$

Enhancement factor:

No stable isotopes: radioactive atom
 Several isotopes with long half-life
 ⇒²¹⁰Fr =3.2 min, ²¹¹Fr =3.1 min, ²¹²Fr =20. min.

H.S.Nataraj, B.K.Sahoo, B.P.Das, D.Mukherjee, PRL**106**,200403(2011). J.Phys.Chem.A**2009**,113,12549.

≻Laser cooling and trapping techniques: localize atoms ⇒ Reduce systematic errors

✓ International situation of Fr trapping LNL (Italy), TRIUMF (Canada) → Parity Violation R. Calabrese et al. G. Gwinner et al. (talked by LA.Orozco)

Laser-cooled francium factory @ CYRIC

Fr+-ion source ~ Thermal ionizer

Fusion reaction: ¹⁸O + ¹⁹⁷Au \rightarrow ²¹⁰Fr + 5n

Saha-Langmuir equation

$$\frac{n^+}{n^0} = \frac{1}{2} \exp\left(\frac{E_{WF} - E_{IP}}{kT}\right)$$

Thermal ionization ← *E*_{IP}(Fr)<*E*_{WF}(Au)

 E_{IP} (Ionization potential): Fr 4.0 eV

 $E_{\rm WF}$ (work function): Au 5.1 eV

lons can be extracted by electric fields.

Desorption from <u>high-temperature liquid target</u>

- Faster diffusion
- Convection flow
- Clear surface

➔ Efficient Ion Production

Omegatron

Alpha-decay spectrum from produced Fr

Francium is identified using SSD in Diagnosis system.

<u>Solid State Detector:</u> detect alpha particles from unstable nuclei.

Checking source (²⁴¹Am) placed near SSD for energy calibration.

Diagnosis system

Blue:

originating from ²⁴¹Am

Green:

originating from ²⁰⁸⁻²¹²Fr and also daughter nuclei

Status of Fr production

Achieved ²¹⁰Fr⁺ yield: ~10⁶ ion/sec @ 0.2e μ A \rightarrow Goal: ~10⁷ ion/sec @ 1 e μ A

Magneto-optical trap (MOT)

Combination of lasers and magnetic fields to localize and cool neutral atoms.

A pair of anti-Helmholtz coils produces the inhomogeneous magnetic field.

2 lasers need to be frequency locked such that they are slightly detuned to red of atomic transitions and stabilized to less than natural linewidth. *Trap and repump laser*

6 beams are necessary to provide confinement & cooling in 3D.

Laser room

Required laser

Fr-atom trap
Trapping : 718 nm (Ti:S laser) ~Ready
Repumping: 718 nm (custom ECLD) ~Ready
Rb-atom trap
Trapping : 780 nm (ECLD) + Taper amp. ~Ready
Repumping: 780 nm (ECLD) ~Ready

When Fr-MOT experiment is performed, the laser lights are transported from Laser room to Fr beamline.

Lasers for Rb MOT

-400 0 400 Frequency / MHz

Rb atoms in MOT

➔ Available to observe a small number of Fr produced by nuclear reaction

→ Develop a new MOT chamber for Fr

Lens system

Trapped atoms

23.4

10.6

Lasers for Fr MOT

Trapping laser - Ti:S Laser (718 nm) Coherent Verdi (532 nm) + MBR110

Repumping lasers (718 nm)

Toptica 718nm ECLD 30mW output

Ion to neutral atom converter

Require <u>neutral atoms</u> for laser cooling and EDM measurement. Francium ion has to be converted to neutral atom.

How to convert ion beam to neutral atom beam

Cf. An orthotropic source of thermal atoms @ LBNL

E_{IP} (Ionization potential): Fr 4.0 eV

 E_{WF} (work function): Y 3.1 eV \rightarrow Neutralization, Pt 5.6 eV \rightarrow Ionization

Orthotropic type beam converter @ CYRIC

Electric field simulation by OPERA-3d/TOSCA

Rb neutralization test results

Detector (electron multiplier)

"Mini" Laser-cooled rubidium factory

Test setup for neutralization and MOT

- ➢ Rb ion beam ··· Ready
- Ion-atom converter ··· Ready
- > Rb MOT (w/ this setup) … 1st try in this month

EDM search with optical lattice

Optical lattice

- Formed by interference of counter-propagating beams.
- Creating a spatially periodic polarization , pattern.

EDM measurement in lattice

- Suppress atomic collisions
- Long coherence time
- Auxiliary atoms "co-magnetometers"
- ➔ High precision EDM search

cf. Phys.Rev.A 63(2001) 033401 C.Chin, V.Leiber, V.Vuletic, A.J.Kerman, S.Chu

Summary and Outlook

Laser-cooled francium factory for electron-EDM measurement

Francium ion production

Achieved extraction of 10⁶ Fr⁺/sec To install new lens system and upgrade primary beam → >10⁷ Fr⁺/sec

Laser cooling and trapping

Achieved Rb-MOT of 10⁸ atoms Developing light sources for Fr

- →Efficient imaging optics
- ➔Transverse cooling system
- →Zeeman slower
- →Optical lattice trap

Convert ion to neutral atom

Beginning to develop an orthotropic type converter → >10% conversion efficiency

→ Rb-MOT with neutralization of Rb-ion beam

In 2012, Fr-MOT and design EDM-measuring method In 2013, 1st Fr-EDM measurement