

Physics Prospects for the SuperB Factory

Kevin Flood

California Institute of Technology

Overview

- Physics Prospects
- Accelerator, Detector
- Timeline, Funding
- Further Reading

SuperB at a Glance

- Asymmetric e⁺e⁻ collider
- E_{e-} ~7 GeV, E_{e+} ~4 GeV
- <u>Clean e⁺e⁻ initial state</u>
- >90% 4π acceptance in CMS
- ~80% polarized electrons
- Data-taking starting ~2017
- <u>E_{CMS}: psi(3770) up to Y(5S)</u>
 - <u>psi(3770)</u>: coherent ccbar
 - <u>Y(4S)</u>: coherent bb (B_u , B_d)
 - <u>Y(5S)</u>: coherent bb (B_s)
 - <u>all E_{CMS} </u> : $\tau^+\tau^-$, continuum light quark (udsc) production
- <u>Luminosity ~10³⁶ cm⁻² s⁻¹</u>
- <u>Synchrotron light source</u>?

• psi(3770):	~1 ab ⁻¹	(few months)
• Y(4S):	~75 ab ⁻¹	(~6 years)
• Y(5S):	~1 ab ⁻¹	(few months)

CKM Unitarity Triangle

$$V_{\text{CKM}} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \quad \stackrel{\text{\bullet is a 3×3 unitary matrix}}{\bullet \text{ parameterized by three mixing angles}} \\ \bullet \text{ and the CP-violating KM phase}^{*} \\ V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix},$$

where $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$, and δ is the phase responsible for all *CP*-violating phenomena in flavor-changing processes in the SM.

• It is known experimentally that $s_{13} \ll s_{23} \ll s_{12} \ll 1$, and can write V_{CKM} to $\mathcal{O}(\lambda^4)$ using the Wolfenstein parameterization**

$$s_{12} = \lambda = \frac{|V_{us}|}{\sqrt{|V_{ud}|^2 + |V_{us}|^2}}, \qquad s_{23} = A\lambda^2 = \lambda \left|\frac{V_{cb}}{V_{us}}\right|$$
$$s_{13}e^{i\delta} = V_{ub}^* = A\lambda^3(\rho + i\eta) = \frac{A\lambda^3\left(\bar{\rho} + i\bar{\eta}\right)\sqrt{1 - A^2\lambda^4}}{\sqrt{1 - \lambda^2}\left[1 - A^2\lambda^4\left(\bar{\rho} + i\bar{\eta}\right)\right]}$$

* N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
 M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
 L. L. Chau and W. Y. Keung, Phys. Rev. Lett. 53, 1802 (1984).

** L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).

18-22 June 2012

CKM Unitarity Triangle

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

• unitarity of the CKM matrix imposes $\sum_i V_{ij}V_{ik}^* = \delta_{jk}$ and $\sum_j V_{ij}V_{kj}^* = \delta_{ik}$

• these can be represented as triangles in a complex plane.

• the most commonly used unitarity triangle arises from

CKM Unitarity Triangle

• unitarity of the CKM matrix imposes $\sum_i V_{ij}V_{ik}^* = \delta_{jk}$ and $\sum_j V_{ij}V_{kj}^* = \delta_{ik}$

• these can be represented as triangles in a complex plane.

• the most commonly used unitarity triangle arises from

SSP 2012 – KVI

18-22 June 2012

CKM Unitarity Triangle Experimental Constraints

• Status of the UT after LP2011 from the combination of all results

- The game is to overconstrain the UT by finding disagreement on the triangle's closure by using independent measurements of the UT sides and angles
- The Babar/Belle physics program resulted in confirmation of the KM mechanism as the source of CPV in the SM
 2008 Nobel Prize to KM

KEVIN FLOOD

Physics Prospects: CKM Unitarity Triangle After SuperB

18-22 June 2012

<u>Physics Prospects</u>: Rare Decays, $B^+ \rightarrow \tau^+ \nu$

Physics Prospects: Charm Physics

 Coherent production at charm threshold will allow precision measurements of mixing parameters (x,y) and strong phases (δ)

Physics Prospects: Tau Physics

Courtesy of A. Lusiani, Pisa, as shown at the most recent SuperB Collaboration Meeting (Elba, 1-4 June 2012)

SuperB Tau Physics NP probes

- many NP models predict tau LFV within SuperB sensitivity
- unambiguous NP probe, negligible theory uncertainties
- SuperB is complementary with MEG

 $(\mu \rightarrow e_{\gamma} \text{ can be accidentally suppressed, tau measurements are complementary})$

▶ best channels: $\tau \rightarrow \mu \gamma, \tau \rightarrow 3\ell, \tau \rightarrow \mu \rho, \tau \rightarrow \mu \eta$

Tau g-2

- ► if MSSM explains today's $\Delta a_{\mu} \approx 3.10^{-9}$ discrepancy $\rightarrow \Delta a_{\tau} \approx m_{\tau}^2/m_{\mu}^2 \cdot \Delta a_{\mu} \approx 1.10^{-6}$
- SuperB sensitivity is in the range of such prediction

Tau EDM and CPV

- SuperB sensitive to some few NP model CPV effects
- tau EDM constrained by electron EDM upper limit to a range inaccessible by SuperB anyway, SuperB can substantially improve the existing limits
- all: beam polarization improves precision & helps discriminating NP models

Tau Physics status report

4th SuperB Collaboration Meeting - La Biodola (Isola d'Elba)

SSP 2012 - KVI

18-22 June 2012

KEVIN FLOOD

A.Lusiani – Pisa

Physics Prospects: Tau Physics

- SuperB will search for transitions $\, au
 ightarrow \mu \,$ and $\, au
 ightarrow e \,$
- e⁻ polarization can help in suppressing backgrounds in some modes
- Searches in final states with little-to-no background can improve by more than two orders of magnitude over Babar
- Can hadron machines compete?
 - No! according to LHCb upgrade projections
 - Yes! according to W.
 Marciano's talk yesterday (10⁻¹⁰ - 10⁻¹¹) ?

Physics Prospects: Precision Electroweak Physics

- $sin^2\theta_w$ can be measured with polarised e^- beam
- $\sqrt{s}=\Upsilon(4S)$ is theoretically clean, c.f. Z pole b-fragmentation at LEP/SLC
- Simply need to measure event rates for left and right polarized beams

Plot adapted from W. Marciano's talk yesterday

SSP 2012 - KVI

18-22 June 2012

• Measure LR asymmetry in

- Done at the Υ(4S) to the same precision as LEP/SLC at the Z-pole, also can have point at charm threshold
- <u>Precision is driven by the</u> <u>polarization measurement</u>
- Complements lower energy measurements

KEVIN FLOOD

<u>Complementarity</u>: CKM Golden Modes, SuperB vs LHCb

 Can make a straightforward comparison of the relative precision of CKM observables measured at SuperB (75 ab⁻¹) versus existing measurements, along with expectations from near-future LHCb (5 fb⁻¹) and after the LHCb upgrade (50 fb⁻¹)

Complementarity: Golden Modes in General, SuperB vs LHCb

A selection of other interesting modes/observables

The Accelerator Scheme

General strategy:

- Very small emittance (ILC-DR)
- Small β^* at IP
- Crab waist technique
- Large crossing angle
- Currents similar to present accelerators

<u>Advantages:</u>

- Small collision area
- No parasitic crossings
- No synchro-betatron resonances
- Moderate backgrounds
- Possible to reuse many components from PEP-II

The Accelerator Complex at the Tor Vergata Campus (near Rome)

The SuperB Detector

18-22 June 2012

The SuperB Timeline

Funding in the INFN Multi-year Plan

	Fully allocated			2	2 2 M	€ allo	ocate	ed			
Componenti S	Super B	Y1	Y2	Y 3	¥4	Y5	Y6	¥7	Y8	Y9	Y10
Sviluppo Acce	eleratore (130 M€)	20	50	60							
Costruzione infrastrutture, Sviluppo damping rings, Sviluppo transfer lines, Messa in funzione linac, Damping lines transfer lines, Costruzione facility end-user								2	561	4	
Sviluppo Cent	ri Calcolo (43 M€)	5	15	23							
Sviluppo proge di calcolo per a	ttazione costruzione centro nalisi dati										
Completamen	to Acceleratore (126 M€)				42	42	42				
Installazione co acceleratore, Ir interazione, Me	omponenti negli archi ostallazione zona di ossa in funzione acceleratore	,									
Utilizzo install	azione (80 M€)							20	20	20	20
Costi operazior acceleratore	ne e manutenzione										
Totale Infrastr	utture tecniche	25	65	83	42	42	42	20	20	20	20
(379 M€)											
Overheads INI	FN	2.3	5.9	7.5	3.8	3.8	3.8	1.8	1.8	1.8	1.8
(34.3 M€ equiv	valente al 9%)										
Cofinanziame	nto INFN (150 M€)	15	15	15	15	15	15	15	15	15	15
Costo Totale o	lel progetto (563.3 M€)	42.3	85.9	105.5	60.8	60.8	60.8	36.8	36.8	36.8	36.8

Funding for accelerator and infrastructure

Computing funding from special funds for south development

Detector funding inside ordinary funding agency budget.

In addition, we re-use parts of PEP-II and Babar, for a value of about 135M€

Further Reading

Conceptual Design Report: arXiv:0709.0451

Valencia Physics Workshop Report: arXiv:0810.1312

Detector White Paper: arXiv:1007.4241

Accelerator White Paper: arXiv:1009.6178

Physics White Paper: arXiv:1008.1541

Impact Document: arXiv:1109.5028

Technical Design Report on target for completion in Sept-Oct 2012

Recent Review: arXiv:1110.3901

SSP 2012 - KVI

18-22 June 2012

BACKUP SLIDES

The Projected SuperB Dataset

• Physics dictates **75** ab^{-1} at the $\Upsilon(4S) + 0.5 - 1 ab^{-1} at/near \psi(3770)$

18-22 June 2012

- At Υ(4S): ~75 x10⁹ B, D and τ pairs
- Will also run at the Y(5S) and above, as well as offresonance running
- ~80% e- polarization will improve S:B in studies of LFV in the tau sector
- At ψ(3770): few x 10⁹
 D pairs
- Also will run at nearby resonances
- Total 0.5 ab⁻¹ collected in several months running

KEVIN FLOOD

Tau physics at SuperB

Outline of work done

SuperB physics documents

- arXiv:1109.5028v2 [hep-ex] The impact of SuperB on flavour physics
- arXiv:1008.1541v1 [hep-ex] SuperB white paper: Physics
- arXiv:1007.4241v1 [physics.ins-det] SuperB white paper: Detector
- arXiv:0810.1312 [hep-ex], Valencia Jan 2008 Workshop Proceedings

SuperB tau physics specific activities

- extrapolations from published analyses results
- exp. limitations on J.Bernabeu et al. tau EDM and g-2 sensitivity estimates with polarized beams
- re-optimization of BABAR 3 leptons analysis [mainly B.Oberhof (Pisa)]
- study of events with $\tau \to \mu \gamma$ against $\tau \to \pi \nu$ with beam polarization [mainly A.Cervelli (Pisa)]
- independent work on $\tau \rightarrow 3\ell$ by C.Weiland, S.Coquereau [w. A.Bevan (QMUL)]

Tau Physics status report

re-optimization

 $\tau \rightarrow 3\ell$ UL extrapolations: $\alpha \mathcal{L}$ vs.

 $\propto \sqrt{L}$

vs.

4th SuperB Collaboration Meeting - La Biodola (Isola d'Elba)

Expected 90% CL upper limits for $\tau \rightarrow 3\ell$ at SuperB@75 ab⁻¹ (preliminary)

Channel	Efficiency (%)	exp.bkg	90% CL UL (10 ⁻¹⁰)
e ⁺ e ⁻ e ⁺	5.2 ± 0.5	1.7 ± 0.6	5.1
$e^+e^-\mu^+$	2.3 ± 0.2	0.16 ± 0.05	7.5
$e^+e^+\mu^-$	8.6 ± 0.9	0.3 ± 0.1	2.4
$\mu^+\mu^-e^+$	4.2 ± 0.4	3.8 ± 1.3	8.3
$\mu^+\mu^+e^-$	6.5 ± 0.6	0.8 ± 0.3	3.4
$\mu^+\mu^-\mu^+$	4.1 ± 0.4	3.3 ± 1.0	8.1

♦ to be compared with 2.10⁻¹⁰ in the Valencia report first estimate

SuperB sensitivity on tau g-2

SUSY is a viable explaination for existing thexp. discrepancy	$\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} \approx (3 \pm 1) \times 10^{-9}$
---	--

• SUSY contribution is larger for tau $\Delta a_{\tau} / \Delta a_{\mu} = m_{\tau}^2 / m_{\mu}^2 \approx 300$

	Sn	owma	ss poi	ns	Super <i>B</i>		
	1a	1b	2	3	4	5	exp. resolution
$\Delta a_{\mu} imes$ 10 ⁻⁹	3.1	3.2	1.6	1.4	4.8	1.1	
$\Delta a_{ au} imes$ 10 ⁻⁶	0.9	0.9	0.5	0.4	1.4	0.3	2.4-1.0

Tau Physics status report

Experimental measurement of tau g - 2 at SuperB

Experimental measurement of tau g - 2 at SuperB

Experimental measurement of tau EDM

SuperB can much reduce tau EDM exp. uncertainty

although "natural" SUSY NP effects too small

T/CP-odd observables in tau decay

Theory expectations

- clean SM predictions
 - ▶ *CP* asymmetry rate of $\tau^{\pm} \rightarrow K^{\pm} \pi^0 v$ estimated order of ~10⁻¹²
 - ▶ $\tau^{\pm} \rightarrow K_S \pi^{\pm} v$ rate asymmetry 3.3×10^{-3} with 2% relative precision
- most NP cannot generate observable CP-violating effects in τ decays
- effects with R-parity viol. SUSY or non-SUSY multi-Higgs up to the current UL from CLEO (~10⁻³)

SuperB sensitivity

- experimental upper limit on charge-dependent angular rate asymmetry for $\tau \to K_S \pi^{\pm} \nu$ [CLEO Collaboration, Phys. Rev. Lett. 88, 111803 (2002), hep-ex/0111095, (13.3 fb⁻¹]
- ♦ extrapolating to SuperB at 75 fb⁻¹ → exp. sensitivity improves by a factor ≈ 75 resolution on optimal observable from 1.8·10⁻³ to ~2.4·10⁻⁵
 - channel can rely on calibration provided by $\tau \rightarrow \pi \pi \pi \nu$ on the K_S sidebands
 - further improvements may be possible with beam polarization (not yet studied)

Update on $\tau \rightarrow \mu \gamma$ sensitivity

- extrapolate from final BABAR result expected upper limit
 - ► BABAR bkg estimates, 2σ box cut & count
 - ► assume improved SuperB tracking reduces $\Delta m \Delta E$ box to 65% of BABAR size
 - assume photon efficiency improves by 20%

(no significant gain possible on loose muon PID used in this analysis)

sensitivity without using beam polarization

Valencia limits			Supe	erB limits		
tau -> mu gamma			ta	au -> mu gamma		
efficiency	=	7.40%		efficiency	=	7.32%
expected background	=	200		expected background	=	335
upper limit 90% CL	=	1.84e-09		upper limit 90% CL	=	2.39e-09
3sigma evidence	=	4.16e-09		3sigma evidence	=	5.44e-09

Update on $\tau \rightarrow \mu \gamma$ sensitiv	vity with beam polarization				
using A.Cervelli May 2011 (Elba) presentation on $\tau \to \mu \gamma$ vs. $\tau \to \pi(\rho) \nu$ simulated with FastSim					
using most natural SUSY LFV $\tau \rightarrow \mu \gamma$ production mode					
assuming cuts have same effect on all tau hadronic decays in tag side					
assuming we use only hadronic decays on tag side					
(actually, with some degradation leptonic decays can be used as well)					
SuperB, hadronic tags, 2D Fastsim helicity cuts	SuperB limits with 1D helicity cut on MC truth				
tau -> mu gamma	tau -> mu gamma				
efficiency = 1.60%	efficiency = 5.12%				
expected background = 27	expected background = 167				
upper limit 90% CL = 3.35e-09	upper limit 90% CL = 2.44e-09				
3sigma evidence = 7.09e-09	3sigma evidence = 5.50e-09				

The quest for the final angle of the CKM matrix: β_c

• The charm cu triangle has one unique element: β_c

 $V_{ud}^* V_{cd} + V_{us}^* V_{cs} + V_{ub}^* V_{cb} = 0$

$$\alpha_{c} = \arg \left[-V_{ub}^{*} V_{cb} / V_{us}^{*} V_{cs} \right].$$

$$\beta_{c} = \arg \left[-V_{ud}^{*} V_{cd} / V_{us}^{*} V_{cs} \right],$$

$$\gamma_{c} = \arg \left[-V_{ub}^{*} V_{cb} / V_{ud}^{*} V_{cd} \right],$$

$$\alpha_{c} = (111.5 \pm 4.2)^{\circ}$$

$$\beta_c = (0.0350 \pm 0.0001)^{\circ}$$

$$\gamma_c = (68.4 \pm 0.1)^{\circ}$$

- Precision measurement of mixing phase in many channels (<2°)
- Constrain $\beta_{c,eff}$ using a $D \rightarrow \pi\pi$ Isospin analysis
 - Search for NP and constrain $\beta_{c,eff} \sim 1^{\circ}$.
 - Can only fully explore in an e⁺e[−] environment.
 - Data from the charm threshold region completes the set of 5 $|V_{ij}|$ to measure: needs SuperB to perform an indirect test of the triangle.

Bevan, Inguglia, Meadows, PRD 84 114009 (2011)

<u>A SuperB Innovation</u>: The Crab Waist Final Focus

Raimondi, Shatilov, Zobov http://arxiv.org/abs/physics/0702033

- Make the final focus so that only a small fraction of one bunch collides with the other bunch
 - Large crossing angle
 - Long bunch length
 - No parasitic crossings
- Due to the large crossing angle the effective bunch length (the colliding part) is now very short so we can lower β_{γ}^{*} by a factor of 50
- The beams must have very low emittance, like present day light sources
 - The x size at the IP now sets the effective bunch length
 - In addition, by crabbing the magnetic waist of the colliding beams we greatly reduce the tune plane resonances enabling greater tune shifts and better tune plane flexibility

density in the overlap between bunches

Luminosity Profile: SuperB vs. Super-Belle

- SuperB design and max instantaneous luminosity will exceed Belle-II
 - SuperB: >10³⁶
 - Belle-II: ~0.810³⁶
- Both machines expect turn- on about 2016-2017
- <u>By 2022-2023</u>:
 - SuperB: 75 ab⁻¹
 - Belle-II: 50 ab⁻¹
- Belle-II uses up-date of current KEK machine, polarized beam, charm threshold running are not possible

