

Marcel Merk 5-th International Symposium on Symmetries in Subatomic Physics (SSP2012) June 18 - 22, Groningen

A slide of History

- Charge Parity Violation in particle physics
 - **1964** (CCFT): Discovered in neutral Kaon beam "<u>indirect</u> CP violation"
 - Also called: CPV in mixing
 - $Prob(K^0 \rightarrow \overline{K}^0) \neq Prob(\overline{K}^0 \rightarrow K^0)$ $|\epsilon| = (2.228 \pm 0.011) \times 10^{-3} (PDG)$
 - **1999** (NA48 & KTeV): Seen in Kaon decays
 "<u>direct</u> CP violation"
 - Also called: CPV in decay
 - Decay rates $\Gamma(K^0 \rightarrow \pi^+\pi^-) \neq \Gamma(K^0 \rightarrow \pi^+\pi^-)$ Re(ϵ'/ϵ) = (1.65 ± 0.26) x 10⁻³ (PDG)
 - 2001 (Belle & Babar): Observed in B mesons decays
 "CP violation in *interference*"
 - Also called: mixing induced CPV Sin2 β = 0.673 ± 0.023 (PDG)

James Watson Cronin

Val Logsdon Fitch

CP Violation in the Standard Model

- The Yukawa flavour couplings Y_{ij} make the theory CP violating if they are complex.
- After Spontaneous Symmetry Breaking the Yukawa terms give rise to quark masses.
- Expressing the quark *flavour eigenstates* in *mass eigenstates* leads to CP violating flavour changing charged currents.
- The origin of CP violation is related to the origin of mass and requires the existence of at least 3 generations

Cabibbo described "V-A" quark interactions with flavour changing charged currents: → quark mixing

$$A = g_{weak} \, W^+_\mu \, J^{\mu +} \ J^{\mu +} = \overline{\psi}_u \, rac{1}{2} (1 - \gamma^5) \, \gamma^\mu \, V_{CKM} \, \psi_d$$

Nicola Cabibbo

Makoto Kobayashi

Toshihide Maskawa

Kobayashi and Maskawa predicted in 1972 the 3rd quark generation to explain CP-Violation within the Standard Model → Nobel Prize 2008 (shared with Nambu)

Particle \rightarrow Antiparticle
$g_{weak} \rightarrow g^*_{weak}$

The CKM Matrix V_{CKM}

The CKM Matrix V_{CKM}

Wolfenstein parametrization: V_{CKM}

$$egin{pmatrix} 1-rac{1}{2}\lambda^2 & \lambda & A\lambda^3\left(
ho-i\eta
ight)\ -\lambda & 1-rac{1}{2}\lambda^2 & A\lambda^2\ A\lambda^3\left(1-
ho-i\eta
ight) & -A\lambda^2 & 1 \end{pmatrix}$$

From unitarity ($V_{CKM} V_{CKM}^{\dagger}=1$) CKM has four free parameters: 3 real: λ (\approx 0.22), A (\approx 1), ρ 1 imaginary: *i* η

Particle \rightarrow Antiparticle: $V_{ij} \rightarrow V_{ij}^{*}$ => 1 CP Violating phase

The CKM Matrix V_{CKM}

Wolfenstein parametrization: V_{CKM}

$$\left(egin{array}{cccc} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-im{\gamma}} \ -|V_{cd}| & |V_{cs}| & |V_{cb}| \ |V_{td}|e^{-im{eta}} & -|V_{ts}|e^{im{eta}_s} & |V_{tb}| \end{array}
ight.$$

Observing CP Violation in B decays

- CP Violation occurs in *interference of two quantum amplitudes* that have a different CP odd (as well as CP even) phase
 - Use the phenomenon of B-B mixing:
 - Interference of direct decay and decay via mixing leads to CP violation.
 Standard Model:
 - $B^0-\overline{B}^0$ phase $\phi_d = arg(V_{td}) = 2\beta$
 - $B_s \overline{B}_s$ phase $\phi_s = arg(V_{ts}) = 2\beta_s$

Observing CP Violation in B decays

- CP Violation occurs in *interference of two quantum amplitudes* that have a different CP odd (as well as CP even) phase
 - Use the phenomenon of $B-\overline{B}$ mixing:
 - Interference of direct decay and decay via mixing leads to CP violation. **Standard Model:**
 - $B^0-\overline{B}^0$ phase $\phi_d = arg(V_{td}) = 2\beta$
 - $B_s \overline{B}_s$ phase $\phi_s = \arg(V_{ts}) = 2\beta_s$

Probing new physics

- Flavour Physics: *indirect* search for new particles or interactions
 - Measure CP violation in many B, D decay modes
 - All observations should be consistent with a single CP phase
 - Measure branching rates of decays that are suppressed in SM
- Look for *interference* of CKM physics with New Physics
 - Expect sensitivity for new physics where SM amplitudes are suppressed: loop diagrams
 - Measure CP phases "with tree decays" and "with loops"

"Penguin" diagram: $\Delta B=1$

Classification of CP Violation Methods @ LHCb

- Many methods have been developed for B decays
- The classification *direct* and *indirect* is no longer sufficient
 - E.g.: methods with intermediate Charm states
- We use also experimental classifications
 - "Time dependent" vs "Time independent" methods
 - Observe CP Violation as function of B-decay time vs integrated over time
 - "Tagged" vs "Untagged" methods
 - Require knowledge of b-flavour at production or not
- I can't give a complete overview
 - Examples of several prominent ongoing analyses

CP Violation Measurements @ LHCb

- *Time Integrated* measurements:
 - (1) Direct CP Violation in charmless decay $B_{(s)} \rightarrow K\pi$
 - Interference of trees with penguins
 - (2) CP Violation in charmed B decays: $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow D^0 \pi^-$
 - Measurement of " γ with trees" using ADS/GLW method
- *Time dependent* measurements (interference of mixing and decay):
 - (3) CP violation in charmless $B_{(s)}$ decays $B_s \rightarrow K^+K^-$ and $B \rightarrow \pi^+\pi^-$
 - Measurement of " γ with loops"
 - (4) CP Violation in charmed B_s Decays $B_s \rightarrow D_s K$
 - Measurement of "γ with trees"
 - (5) CP Violation in B_s decays to CP eigenstate $B_s \rightarrow J/\psi \phi$
 - Measurement of B_s mixing phase Φ_s (β_s)
- A charming surprise: CP Violation in charm
 - (6) CP Violation in two-prong hadronic D⁰ decays
 - Measurement of ΔA_{CP} , difference of CP violation in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$

LHCb @ LHC

Vertex Topology

Vertex Locator

Momentum and Mass Reconstruction

Trigger Tracker

Magnet

Outer Tracker

Particle Identification: π , K, μ , γ , e

RICH

Calorimeter

Muon

LHCb Running

2011

Integrated LHCb Efficiency breakdown in 2011

Integrated LHCb Efficiency breakdown in 2012

CP Violation Measurements @ LHCb

- Time Integrated measurements:
 - (1) Direct CP Violation in charmless decays $B_{(s)}$ ->K π .
 - (2) CP Violation in charmed decays $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow D^0 \pi^-$
- Time dependent measurements (interference of mixing and decay):
 - (3) CP violation in charmless $B_{(s)}$ decays $B_s \rightarrow KK$ and $B \rightarrow \pi\pi$
 - (4) CP Violation in charmed B_s decays $B_s \rightarrow D_s$ K
 - (5) CP Violation in B_s decays to CP eigenstate $B_s \rightarrow J/\psi \phi$
- CP Violation in mixing
 - (6) A charming surprise

(1) Direct CP Violation with $B_{(s)} \rightarrow K\pi$

- Interference of trees and penguins
 - New physics can contribute to penguin loop
- Sensitive to V_{ub} phase: CKM angle γ
- Measure the *untagged* CP asymmetry for B⁰ and B_s decays:

$$\mathcal{A_{CP}} = rac{\left(N_{\overline{B}
ightarrow \overline{f}} - N_{B
ightarrow f}
ight)}{\left(N_{\overline{B}
ightarrow \overline{f}} + N_{B
ightarrow f}
ight)}$$

$$B
ightarrow f = \left\{ egin{array}{c} B^0
ightarrow K^+ \pi^- \ B_s
ightarrow \pi^+ K^- \end{array}
ight.$$

$$\mathcal{A}_{\mathrm{raw}} = \mathcal{A}_{\mathcal{CP}} + \mathcal{A}_{\mathrm{det}} + \kappa \cdot \mathcal{A}_{\mathrm{prod}}$$

(The correction factor is ~1%, measured from data)

Instrumental Mixing dilution times asymmetry production asymmetry

Marcel Merk – SSP2012

(1) Direct CP Violation with $B_{(s)} \rightarrow K\pi$

CP Violation Measurements @ LHCb

- Time Integrated measurements:
 - (1) Direct CP Violation in charmless decays $B_{(s)}$ ->K π .
 - (2) CP Violation in charmed decays $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow D^0 \pi^-$
- Time dependent measurements (interference of mixing and decay):
 - (3) CP violation in charmless $B_{(s)}$ decays $B_s \rightarrow KK$ and $B \rightarrow \pi\pi$
 - (4) CP Violation in charmed B_s decays $B_s \rightarrow D_s$ K
 - (5) CP Violation in B_s decays to CP eigenstate $B_s \rightarrow J/\psi \phi$
- CP Violation in mixing
 - (6) A charming surprise

color suppression

B→DK shows **4.0 σ evidence** of CPV:

 $A_{ADS}(K) = -0.52 + 0.15 + 0.02$ $R_{ADS}(K) = 0.015 + 0.002 + 0.000$ B→Dπ shows **2.4σ hint** of possible asym:

 $A_{ADS}(\pi) = 0.14 + 0.06 + 0.01$ $R_{ADS}(\pi) = 0.0041 + 0.0003 + 0.0001$

CP Violation Measurements @ LHCb

- Time Integrated measurements:
 - (1) Direct CP Violation in charmless decays $B_{(s)}$ ->K π .
 - (2) CP Violation in charmed decays $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow D^0 \pi^-$
- Time dependent measurements (interference of mixing and decay):
 - (3) CP violation in charmless $B_{(s)}$ decays $B_s \rightarrow KK$ and $B \rightarrow \pi\pi$
 - (4) CP Violation in charmed B_s decays $B_s \rightarrow D_s$ K
 - (5) CP Violation in B_s decays to CP eigenstate $B_s \rightarrow J/\psi \phi$
- CP Violation in mixing
 - (6) A charming surprise

Time Dependent CP Violation

$$B_{e^{i\phi_{d}}} = f_{CP}$$

$$B_{s} = f_{C$$

• Extraction of \mathcal{A}^{dir} and \mathcal{A}^{mix} require flavour tagging: knowing the flavour of the B-meson at production

(3) Charmless $B_{(s)}$ decays $B \rightarrow \pi^+ \pi^-$ and $B_s \rightarrow K^+ K^-$

A measurement of " γ with loops"

(Fleisher: Phys.Lett.B459:306-320,1999)

- Sensitivity to new physics enters via the penguin loop
- Combined analysis of $B \rightarrow KK$, $B \rightarrow \pi\pi$ with $B \rightarrow K\pi$
 - Make use of U-spin flavour symmetry to extract common hadronic factors

$$egin{aligned} \mathcal{A}_{\pi\pi}^{mix} &\sim 2eta + 2\gamma & & \mathcal{A}_{KK}^{mix} &\sim 2eta_s + 2\gamma \ \mathcal{A}_{\pi\pi}^{dir} &\sim 2\gamma & & \mathcal{A}_{KK}^{dir} &\sim 2\gamma \end{aligned}$$

(3) Charmless $B_{(s)}$ decays $B \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$

CP Violation Measurements @ LHCb

- Time Integrated measurements:
 - (1) Direct CP Violation in charmless decays $B_{(s)}$ ->K π .
 - (2) CP Violation in charmed decays $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow D^0 \pi^-$
- Time dependent measurements (interference of mixing and decay):
 - (3) CP violation in charmless $B_{(s)}$ decays $B_s \rightarrow KK$ and $B \rightarrow \pi\pi$
 - (4) CP Violation in charmed B_s decays $B_s \rightarrow D_s$ K
 - (5) CP Violation in B_s decays to CP eigenstate $B_s \rightarrow J/\psi \phi$
- CP Violation in mixing
 - (6) A charming surprise

(4) Charmed B_s decays: $B_s \rightarrow D_s K$

Two decay amplitudes to the same final state:

1) via mixing $B_s \rightarrow \overline{B_s} \rightarrow D_s^- K^+$:

• Golden mode for a time dependent measurement of $\underline{"\gamma}$ with trees"

Hadronic uncertainties small

- Sensitivity to new physics enters via the mixing loop: expected to be small
- Combined analysis of $B \rightarrow D_s K$ with $B_s \rightarrow D_s \pi$:
 - For $B_s \rightarrow D_s \pi$ only decay amplitude 2) is possible (no CP violation)
 - Use $B_s \rightarrow D_s \pi$ decay as a calibration process for B mixing

 B_s^0

 D_s^-

(4) Charmed B_s decays: $B_s \rightarrow D_s K$

CP Violation Measurements @ LHCb

- Time Integrated measurements:
 - (1) Direct CP Violation in charmless decays $B_{(s)}$ ->K π .
 - (2) CP Violation in charmed decays $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow D^0 \pi^-$
- Time dependent measurements (interference of mixing and decay):
 - (3) CP violation in charmless $B_{(s)}$ decays $B_s \rightarrow KK$ and $B \rightarrow \pi\pi$
 - (4) CP Violation in charmed B_s decays $B_s \rightarrow D_s$ K
 - (5) CP Violation in B_s decays to CP eigenstate $B_s \rightarrow J/\psi \phi$
- CP Violation in mixing
 - (6) A charming surprise

(5) B_s decays to a CP eigenstate: $B_s \rightarrow J/\psi \phi$

Two decay amplitudes to the same CP eigenstate final state.

- Golden mode for a time dependent measurement of <u>"β_s via mixing diagram"</u> – Hadronic uncertainties small
- High sensitivity to new physics that enters via the mixing loop
- B_s is a *speudoscalar* (s=0) while J/ψ and φ are *vector* particles (s=1)
 - Final state is superposition of CP even (L=0 and L=2) CP odd (L=1)
 - Requires angular analysis to disentangle
- Alternative analysis in pure CP odd eigenstate $B_s \rightarrow J/\psi f_0(980)$

(5) B_s decays to a CP eigenstate: $B_s \rightarrow J/\psi \phi$

Consistent with no CP violation as predicted in SM

CP Violation Measurements @ LHCb

- Time Integrated measurements:
 - (1) Direct CP Violation in charmless decays $B_{(s)}$ ->K π .
 - (2) CP Violation in charmed decays $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow D^0 \pi^-$
- Time dependent measurements (interference of mixing and decay):
 - (3) CP violation in charmless $B_{(s)}$ decays $B_s \rightarrow KK$ and $B \rightarrow \pi\pi$
 - (4) CP Violation in charmed B_s decays $B_s \rightarrow D_s$ K
 - (5) CP Violation in B_s decays to CP eigenstate $B_s \rightarrow J/\psi \phi$
- CP Violation in mixing
 - (6) A charming surprise

(6) CP Violation in mixing: A Charming Surprise

- CP Violation in charm:
 - The mixing amplitude is small.
 - Expect no significant interference between mixing and decay
 - Difference $D \rightarrow \overline{D}$ and $\overline{D} \rightarrow D$ expected to be very small $\rightarrow O(10^{-4})$
 - Direct CP violation (in decay)
 - Expected negligible in Cabibbo favoured modes ("Trees")
 - In Cabibbo suppressed mode "plausible" up to O(10⁻³ 10⁻⁴)
 - Expectation: observation of any CP asymmetry in charm is a sign of New Physics...

(6) CP Violation in mixing: A Charming Surprise

• CP asymmetry from charm decays:

$$\mathcal{A}_{CP}^{f}(t) = \frac{\Gamma_{D \to f}(t) - \Gamma_{\overline{D} \to f}(t)}{\Gamma_{D \to f}(t) + \Gamma_{\overline{D} \to f}(t)}$$

- Measure time integrated CP asymmetries in $D \rightarrow \pi^+\pi^-$ and $D \rightarrow K^+K^-$
 - Use decays $D^{*\pm} \rightarrow D \pi_s^{\pm}$ to tag the flavour of the D (D or \overline{D}) using the charge of the slow pion π_s

M.Gersabeck et. al.,
J.Phys. G39 (2012) 045005
$$A^f_{CP} = a^{dir}_{CP}(f) + rac{\langle t
angle}{ au} a^{ind}_{CP}$$

 Observed asymmetry includes detector effects and possible production asymmetry of D*

 $A_{raw}(f) = A_{CP}(f) + A_D(f) + A_D(\pi_s) + A_P(D^{*+})$

• Cancel these to first order by measuring *difference* between $D \rightarrow \pi^+\pi^-$ and $D \rightarrow K^+K$:

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

$$= \left[a_{CP}^{dir}(KK) - a_{CP}^{dir}(\pi\pi)
ight] + rac{\Delta \left< t \right>}{ au} a_{CP}^{ind}$$

Contribution from possible indirect CP violation term small

Signal Yields

LHCb, 0.6 fb⁻¹,

LHCb, 0.6 fb⁻¹, PRL 108, 111602 (2012)

1.4 M tagged $D^0 \rightarrow K^+K^-$ and 0.4M tagged $D^0 \rightarrow \pi^+\pi^-$

Value is larger than was expected from SM before measurement was available *Postdiction*: general agreement that we cannot yet exclude that it is caused by hadronic uncertainties...

- Currently hot activity in experiment and in theory.

Summary & Conclusions

- CP Violation:
 - **1964** CP Violation with K⁰
 - **2001** CP Violation with B⁰
 - 2011 Evidence for CP Violation with B_s and CP Violation with D⁰
- LHCb carrying out full physics program
 - Collected 1.5 fb⁻¹ by now
 - Backgrounds well under control
 - Expect to collect 5 fb⁻¹ before upgrade
- Time dependent and time integrated CP observables for B decays
 - Towards measurements of CKM angle "γ with trees"
 - Towards measurements of CKM angle "γ with loops"
 - World best measurement of B_s mixing phase ϕ_s (consistent with SM β_s)
- CP violation in charm
 - Evidence for CP violation in ΔA_{CP} .
 - Hadronic effects to be clarified.
- LHCb upgrade in 2018
 - Higher luminosity: expect to collect 50 fb⁻¹ in the upgrade
 - New 40 MHz Trigger
 - Extend the physics program