The NPDGamma Experiment at the SNS

Motivation

Weak Interaction between quarks

Radiative capture of polarized cold neutrons in protons

NPDGamma experiment at the SNS

Status report

Summary and Outlook

Hadronic Weak Interaction (HWI)

- Probe of qq correlations in hadrons (range W-Z exchange << N size).
 - Natural scale ~ \times 10⁻⁷, set by relative size of meson vs boson exchange amplitudes.
 - At low energy, the weak *NN* is sensitive to qq neutral current effects.
 - Induce parity-odd effects in electron scattering, nuclear decays, compound nuclear resonances, and atomic structure (nuclear anapole moments).

• Above QCD scale $\Lambda = 1$ GeV, at the quark level, the qq weak interaction can be written in a current-current form ($\Delta I = 0, 1, 2$).

• At the nucleon level, below Λ , five independent weak transition amplitudes (ΔI = 0, 1, 2) are present in NN elastic scattering at low ₃ energy.

The PV γ -ray asymmetry in $\vec{n} + p \rightarrow d + \gamma$ is dominated by the $\Delta l=1$ parityodd transition amplitude $({}^{3}S_{1} - {}^{3}P_{1})$ expected from the HWI between nucleons.

Simple Level Diagram of *n*-*p* System; $\vec{n} + p \rightarrow d + \gamma$ is primarily sensitive to the $\Delta l = 1$ component of the weak interaction

 $\left< {}^{3}S_{1} \left| V_{W} \right| {}^{1}P_{1} \right>; \Delta I = 0$

 $\langle {}^{1}S_{0} | V_{W} | {}^{3}P_{0} \rangle; \Delta I = 2$

- Weak interaction mixes in *P* waves to the singlet and triplet *S*-waves in initial and final states.
- Parity conserving transition is M1.
- Parity violation arises from mixing in *P* states and interference of the *E*1 transitions.
- A_{γ} is coming from ${}^{3}S_{1} {}^{3}P_{1}$ mixing and interference of *E*1-*M*1 transitions - $\Delta I = 1$ channel.

Hadronic Weak Interaction Models

1. <u>DDH model</u> – uses valence quarks to calculate effective PV meson-nucleon coupling directly from SM via 7 weak meson coupling constants

 $(f_{\pi}^{1}, h_{\rho}^{0}, h_{\rho}^{1}, h_{\rho}^{1'}, h_{\rho}^{2}, h_{\omega}^{0}, h_{\omega}^{1})$

Observables can be written as their combinations

$$A = a_{\pi}^{1} f_{\pi}^{1} + a_{\rho}^{0} h_{\rho}^{0} + a_{\rho}^{1} h_{\rho}^{1} + a_{\rho}^{2} h_{\rho}^{2} + a_{\omega}^{0} h_{\omega}^{0} + a_{\omega}^{1} h_{\omega}^{1}$$

	$n+p \bullet d+\gamma$	$n+d \blacktriangleright t+\gamma$	$n-p \varphi_{PV}$	n- ⁴ He φ_{PV}	<i>p-p Δσ/σ</i>	p -4 $He \Delta \sigma / \sigma$
	$A_{\gamma}(ppm)$	$A_{\gamma}(ppm)$	(µrad/m)	(µrad/m)	(ppm)	(ppm)
f_{π}	-0.107	-0.92	-3.12	-0.97		-0.340
$h_{ ho}^{\ heta}$		-0.50	-0.23	-0.32	0.079	0.140
$h_{ ho}^{1}$	-0.001	0.103		0.11	0.079	0.047
$h_{ ho}^2$		0.053	-0.25		0.032	
$h_{\omega}^{\ heta}$		-0.160	-0.23	-0.22	-0.073	0.059
h_{ω}^{1}	0.003	0.002		0.22	0.073	0.059

 $f_{\pi} \sim 4.5 \text{x} 10^{-7}$

Weak π -nucleon coupling (long range)

 $A_{\gamma} \approx -0.11 f_{\pi}^{1}$

HWI Models - Continued

2. Effective Field Theory

- developed by Holstein, Ramsey-Musolf, van Kolck, Zhu and Maekawa
- model-independent

 NN potentials are expressed in terms of 12 parameters, whose linear combinations give us 5 low energy coupling constants

connect to 5 parity-odd S-P NN amplitudes

$$\lambda_t, \lambda_s^{I=0,1,2}, \rho_t$$
 Corresponding to
 $A_{\gamma}^{\bar{n}p} \approx -0.27 \widetilde{C}_6^{\pi} - 0.09 m_{\rm N} \rho_t$

$${}^{1}S_{0} \rightarrow {}^{3}P_{0} \quad (\Delta I = 0, 1, 2)$$
$${}^{3}S_{1} \rightarrow {}^{1}P_{1} \quad (\Delta I = 0)$$
$${}^{3}S_{1} \rightarrow {}^{3}P_{1} \quad (\Delta I = 1)$$

3. Lattice QCD (NEW)

$$h_{\pi NN}^{1} = 1.099 \pm 0.505 + 0.058 - 0.064$$
 [x10⁻⁷]

- J. Wasem, PRC C85 (2012)

NPDGamma – Experimental Setup

LANSCE Results and Improvements for SNS

$$A_{\gamma,UD} = \left[-1.2 \pm 2.1(stat.) \pm 0.2(sys.)\right] \times 10^{-7}$$
$$A_{\gamma,LR} = \left[-1.8 \pm 1.9(stat.) \pm 0.2(sys.)\right] \times 10^{-7}$$
M.T. Gericke et al., Phys. Rev **C83**, 015505 (2011)

Sensitivity	2x10 ⁻⁷	1x10 ⁻⁸
Polarizer	³ He polarizer (<mark>average</mark> 55% NP)	SuperMirror Polarizer (95% NP)
FOM (NP ²)	8.9x10 ⁷ /s	X200 improvement
Target	16L, LH ₂	New and improved, thinner windows

Spallation Neutron Source at ORNL

- •1.4 GeV protons, 60Hz
- Hg Spallation target _ neutrons
- \bullet H₂ moderator
- •17 m SM guide, curved

Spallation Neutron Source at ORNL Reached 1MW of power – September, 2009

The NPDGamma Experiment at the SNS

Magnetic Field Measurements

S. Balascuta *et al*, NIMA **671**, 137-143 (2012)

14

Photon Csl Detector System

There are 48 detectors arranged in 4 rings. $\sim 3\pi$ geometrical solid angle.

$$A_{raw} = \frac{Y^{\uparrow} - Y^{\downarrow}}{Y^{\uparrow} + Y^{\downarrow}} \qquad A_{raw} = \frac{1}{2} \left(\frac{Y_i^{\uparrow} - Y_j^{\uparrow}}{Y_i^{\uparrow} + Y_j^{\uparrow}} + \frac{Y_j^{\downarrow} - Y_i^{\downarrow}}{Y_j^{\downarrow} + Y_i^{\downarrow}} \right)$$

Commissioning Phases I and II (began Dec, 2010) Beam profile measured Flux confirmed Detailed studies of new shielding BG-subtracted signal gauss fit, center at x=0.56mm performed 1.2 to M1 Polarization of beam establishe Signal in BPM, normalized Precision measurements of determination 0.8 completed Al and Chlorine data collection 0.6 0.4 0.2 0 -2 2 -4 0 -6 6 BPM position (in), positive --> UP Maximum flux is well-matched to the center of the detector array

Beam Polarization Measurements

19

A_Y from ³⁵Cl and ²⁷Al

 ³⁵CI PV asymmetry is well known, it is enhanced (10⁻⁵), and it is used as an initial check and to test important experimental systematics.

 ²⁷Al is the largest source of background in NPDGamma and the PV asymmetry needs to be measured to about 3×10⁻⁸.

$$\sqrt{\left\langle A_{\gamma}^{2} \right\rangle} = 1.3 \times 10^{-7}$$

³⁵CI PV (up-down) and PC (left-right) Asymmetries

²⁷*AI* PV (up-down) and PC (left-right) Asymmetries

²⁷*AI* PV (up-down) and PC (left-right) Asymmetries

• The PV result is the most precise up to now. The statistical errors are $< 4 \times 10^{-8}$. This will be the first statistically significant measurement of the asymmetry in the NPDGamma reaction.

• The PC (left-right) result is statistically significant and somehow surprising. Three factors :

- Stern-Gerlach effect (B-field)
- Mott-Schwinger effect (spin-orbit)
- Direct reaction

Liquid Para-Hydrogen Target

Production Data on Hydrogen- so far

- Raw asymmetry
- No BG subtraction
- Fit to the geometric factors shows current sensitivity of 5.6x10⁻⁸

Status of the NPDGamma experiment

- Numerous improvements to the experiment allow for the first measurement of A_{γ} that will test theoretical predictions

• Predicted size: 5x10⁻⁸ (DDH) - NPDGamma will make a 20% measurement (1x10⁻⁸)

- Results from CI and AI out soon.
- Production Hydrogen Data is underway !

The NPDGamma collaboration

R. Alarcon¹, P. Alonzi³, S. Balascuta¹, L. Barron-Palos², S. Baeßler³, J.D. Bowman⁴, J.R.Calarco⁹, R.D. Carlini⁵, W.C. Chen⁶, T.E. Chupp⁷, C. Crawford⁸, M. Dabaghyan⁹, A. Danagoulian¹⁰, M. Dawkins¹¹, N. Fomin¹⁰, S.J. Freedman¹³, T.R. Gentile⁶, M.T. Gericke¹⁴ R.C. Gillis¹¹, K. Grammer¹², G.F. Greene^{4,12}, F. W. Hersman⁹, T. Ino¹⁵, G.L. Jones¹⁶, S. Kucucker¹², B. Lauss¹⁷, W. Lee¹⁸, M. Leuschner¹¹, W. Losowski¹¹, E. Martin⁸, R. Mahurin¹⁴, M. McCrea¹⁴, Y. Masuda¹⁵, J. Mei¹¹, G.S. Mitchell¹⁹, S. Muto¹⁵, M. Musgrave¹², H. Nann¹¹, S. Page¹⁴, D.Počanic³, S.I. Penttila⁴, D. Ramsay^{14,20}, A. Salas Bacci¹⁰, S. Santra²¹, P.-N. Seo³, E. Sharapov²³, M. Sharma⁷, T. Smith²⁴, W.M. Snow¹¹, W.S. Wilburn¹⁰ V. Yuan¹⁰

¹Arizona State University ²Universidad Nacional Autonoma de Mexico ³University of Virginia ⁴Oak Ridge National Laboratory ⁵Thomas Jefferson National Laboratory ⁶National Institute of Standards and Technology ⁷Univeristy of Michigan, Ann Arbor ⁸University of Kentucky ⁹University of New Hampshire ¹⁰Los Alamos National Laboratory ¹¹Indiana University ¹²University of Tennessee ¹³University of California at Berkeley ¹⁴University of Manitoba, Canada ¹⁵High Energy Accelerator Research Organization (KEK), Japan ¹⁶Hamilton College ¹⁷Paul Scherrer Institute, Switzerland ¹⁸Spallation Neutron Source ¹⁹University of California at Davis ²⁰TRIUMF, Canada ²¹Bhabha Atomic Research Center, India ²²Duke University ²³Joint Institute of Nuclear Research, Dubna, Russia ²⁴University of Dayton