Standard model at the LHC:

QCD

SSP 2012, Groningen

Eric Laenen

No LHC without understanding QCD

QCD at the LHC operates in new regime: high energy, large multiplicities. It produces interesting needles

- Higgs, top, SM, BSM, ...
and enormous amounts of hay
- Jets, b's, underlying events, multi-parton scattering

How to separate?

- Develop/use the best theoretical tools available
- Much interaction among theorists and experimenters

LHC poses a daunting challenge to QCD theorists

QCD predictions at the LHC

Factorization theorem
Collins, Soper, Sterman; Bodwin
pdf's initial state spin etc averaging

$$
\begin{aligned}
\langle O\rangle= & \frac{1}{2 s} \int d x_{1} f\left(x_{1}\right) \int d x_{2} f\left(x_{2}\right) \frac{1}{\left(2 s_{1}+1\right)\left(2 s_{2}+1\right) n_{1} n_{2}} \\
& \times \sum_{n} \int d \phi_{n-2} O\left(p_{1}, \ldots, p_{n}\right)|A(n)|^{2}+\sum_{p=1} c_{p}\left(\frac{\Lambda}{Q}\right)^{p} \\
& \text { phase space integral observable amplitude } \quad \text { power corrections }
\end{aligned}
$$

QCD predictions, simplified

- Each input has uncertainty
- Tools have intrinsic accuracy

QCD predictions, less simplified

This talk

Flavor of state-of-the-art in

- LO,NLO,NNLO
- Resummation
- Monte Carlo
with some recent applications and present challenges

Higher order QCD

LO, NLO cross sections

Multi-differential hadronic NLO cross section

$$
\frac{d \sigma^{p p \rightarrow X}}{d^{3} p_{1} \ldots d^{3} p_{n}}=\sum_{a, b} \int d x_{1} d x_{2} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right)
$$

$$
\times \hat{\sigma}_{a b}\left(p_{a}+p_{b} \rightarrow p_{X}, \alpha_{s}\left(\mu_{R}\right), \mu_{R}, \mu_{F}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{Q^{2}}\right)
$$

Multi-differential parton-level NLO cross section

Renormalization and Factorization scale

For NNLO, add "N" in all the right places..

Parton distribution functions

$$
f_{i / P}\left(x, \mu_{F}\right)
$$

Probability for parton of type " i " inside proton P to interact having momentum fraction " x "

\checkmark There are 13.
\checkmark Universal, and crucial for accurate predictions at LHC
\checkmark Sophisticated approaches, various groups, publicly available
\checkmark No time to do justice..

Status of Higher Order

Order	$2 \rightarrow 1$	$2 \rightarrow 2$	$2 \rightarrow 3$	$2 \rightarrow 4$	$2 \rightarrow 5$	$2 \rightarrow 6$
1	LO					
α_{s}	NLO	LO				
α_{s}^{2}	NNLO	NLO	LO			
α_{s}^{3}	NNNLO	NNLO	NLO	LO		
α_{s}^{4}				NLO	LO	
α_{s}^{5}					NLO	LO

- LO well-understood, now more efficient than ever
- NLO: a flood of new developments
- NNLO $2 \rightarrow 2$ starting now..
\checkmark Show now also start including NLO QCD + EW
NNNLO: for $\mathrm{F}_{2}(\mathrm{x}, \mathrm{Q})$, from same (Nikhef) foundry as NNLO splitting functions

Need for computer algebra!!

FORM Vermaseren

Result of a brute force calculation (actually only a small part of it):

NLO: all it took was a wish...

- First composed in Les Houches in 2005, added to in 2007,2009 by Joey Huston
- List of "doable" calculations needed for LHC
- They have now all been done
- (except tttt)

..and a revolution in calculational methods

Nonlinear progress in $\mathrm{W}+\mathrm{n}$ jets
D. Maitre, Talk at SM@LHC workshop, NBI

Recent progress

- Number of jets in addition to the vector boson

다 LO
든 NLO
₹MC@NLO

- POWHEG
$\geqslant \mathrm{HEJ}$

Berger, Bern, Dixon, Febres-Cordero, Forde

Leading order

The problem here is not handling divergences, but handling complexity. For $g g \rightarrow \mathrm{ng}$ number of diagrams grows factorially

n	2	3	4	5	6	7	8
diagrams	4	25	220	2485	34300	559405	$1.05 \mathrm{E}+07$

Nowadays routinely handled:

- Madgraph/Madevent (helicity amplitudes), Sherpa/Amegic++, Helac/ Phegas, Alpgen (recursion), Comphep (matrix elements)
\checkmark after many inventions

LO scattering: know your quantum numbers

$$
\mathcal{A}_{n}(1, . ., n)=g^{n-2} \sum_{\sigma} \overbrace{\text { Color-ordered amplitudes }}^{\text {Color-decomposition }}
$$

For $n=6: 34300 \rightarrow 50 \mid$ color-ordered amplitudes
Specify all helicities \rightarrow can use efficient spinor techniques

$$
\begin{aligned}
& A\left(1^{ \pm}, 2^{\oplus}, \ldots, n^{ \pm}\right) \bar{u}_{-}=\langle p-| \\
&\langle p q\rangle \equiv\langle p-\mid q+\rangle, \quad[p q] \equiv\langle p+\mid q-\rangle
\end{aligned}
$$

MHV amplitude

$$
A_{n}^{\text {tree }}\left(1^{+}, \ldots, j^{-}, \ldots, k^{-}, \ldots, n^{+}\right)=i(\sqrt{2})^{n-2} \frac{\langle j k\rangle^{4}}{\langle 12\rangle \ldots\langle n 1\rangle}
$$

But what about more minuses?
From twistor approach (witten): use these as building blocks

Post-twistor recursion

Construct helicity amplitude by sewing togetherMHV building blocks using I propagator.

Six diagrams only! (Was 220 in this case..)

Pre-twistor recursion (Leiden, I980's and 90's)

Berends, Giele

- Define "currents": one gluon off-shell, n off-shell. Obey "obvious" recursion.
- Analytically elegant, numerically efficient, was important for top-quark discovery (VECBOS: Berends, Kuij, Tausk, Giele)

What is faster, the old or the new?

Speed

Final	BG		BCF		CSW	
State	CO	CD	CO	CD	CO	CD
$2 g$	0.24	0.28	0.28	0.33	0.31	0.26
$3 g$	0.45	0.48	0.42	0.51	0.57	0.55
$4 g$	1.20	1.04	0.84	1.32	1.63	1.75
$5 g$	3.78	2.69	2.59	7.26	5.95	5.96
$6 g$	14.2	7.19	11.9	59.1	27.8	30.6
$7 g$	58.5	23.7	73.6	646	146	195
$8 g$	276	82.1	597	8690	919	1890
$9 g$	1450	270	5900	127000	6310	29700
$10 g$	7960	864	64000	-	48900	-

Dinsdale, Ternick, Weinzier

n	4	5	6	7	8	9	10	11	12
Berends-Giele	0.00005	0.00023	0.0009	0.003	0.011	0.030	0.09	0.27	0.7
Scalar	0.00008	0.00046	0.0018	0.006	0.019	0.057	0.16	0.4	1
MHV	0.00001	0.00040	0.0042	0.033	0.24	1.77	13	81	-
BCF	0.00001	0.00007	0.0003	0.001	0.006	0.037	0.19	0.97	5.5

The old is still faster (except for MHV)...

LO, NLO, etc

Combine with PDF's, put in MC integrator, apply cuts etc

Calculate in $D=4-2 \varepsilon$ dimensions

NLO $\hat{\sigma}^{(1)}$

Cancel IR poles I / ε^{2} before anything else

NNLO $\hat{\sigma}^{(2)}$

Cancel IR poles I / ε^{4} etc before anything else; hard!

Handling intermediate IR divergences

$d \sigma_{N L O}=\int_{d \Phi_{n+1}}\left(d \sigma_{N L O}^{R}-d \sigma_{N L O}^{S}\right)+\left[\int_{d \Phi_{n}} d \sigma_{N L O}^{V}+\int_{d \Phi_{n}}\left(\int_{d \Phi_{1}} d \sigma_{N L O}^{S}\right)\right]$

Subtraction schemes (ElIs, Ross, Terano): find clever $d \sigma_{N L O}^{S}$

- Dipole (catani, seymour): emitter + spectator + soft-collinear parton
\checkmark Color-charge operators; collinear split + half of soft
- Antenna (Kosower): 2 radiators + soft-collinear parton
\checkmark Color-ordering; soft + half collinear splits

- FKS (Frixione, Kunszt, Signer): isolate each singularity with projectors. Use plus prescriptions to define IR-finite part.

Why go beyond LO?

Precision!

- Accurate prediction of production rates
- Better modelling of distribution shapes due to extra partons
- Self-diagnostics of PT
- New channels open up beyond LO, not necessarily small

NLO benefit

Preliminary results for $\mathrm{W}+5$ jets

- First 2 --> 6(7) calculation at NLO for the LHC

One-loop revolution

Since boxes, triangles etc are standard basis: find coefficients
Many ideas based on unitarity: construct a function from its poles and branch cuts

- poles: lower \# of external lines

- branch cuts: lower \# of loops
$\frac{1}{p^{2}+i \epsilon} \longrightarrow-i 2 \pi \delta_{+}\left(p^{2}\right)$

Replace propagator by cut one, as in phase space

Generalized unitarity

$\mathcal{M}=\sum_{i} a_{i}(4)$ Boxes $_{i}+\sum_{i} b_{i}(4)$ Triangles $_{i}+\sum_{i} c_{i}(4)$ Bubbles $_{i}+\sum_{i} d_{i}(4)$ Tadpoles $_{i}+$ Rational term

Basis set of integrals

\checkmark Calculate cuts of M on left
\checkmark Cut on right only in Boxes etc
\checkmark Match, find coefficients a,b,c,d
\checkmark Use other methods to find Rational term

More one-loop ideas

\checkmark Numerical loop integration Nagy, Soper
\checkmark Numerical solution to BG recursions Ellis, Giele, Zanderighi

$$
I_{\mu_{1} \mu_{2} \ldots \mu_{n}}=\int \frac{d^{D} l}{(2 \pi)^{D}} \frac{l_{\mu_{1}} \cdots l_{\mu_{n}}}{D_{0} D_{1} \cdots D_{N}} \quad \text { Tensor integral }
$$

\checkmark Better Passarino-Veltman Denner, Dittmaier; Binoth, Guillet, Pilon, Heinrich, Schubert

$$
\int d^{D} l \frac{1}{D_{1} D_{2} D_{3}}=\int d^{D} l \int_{0}^{1} d x \int_{0}^{1-x} d y \frac{1}{\left[x D_{1}+y D_{2}+(1-x-y) D_{3}\right]^{3}}
$$

\checkmark Sector decomposition of multiple Feynman parameter integrals plus contour deformation

Anastasiou, Beerli, Daleo
\checkmark Algebraic inversion of coefficients of scalar integrals at integrand level, using unitarity conditions, and partial fractioning (p p $\rightarrow \mathrm{VVV}$)

Ossola, Papadopoulos, Pittau Ellis, Giele, Kunszt; Melnikov

Lively marketplace of ideas, now settling on a few vendors

Web tools: MadGraph, aMC@NLO

Generate processes online using MadGraph 5

To improve our web services we request that you register. Registration is quick and free. You may register for a password by clicking here. Please note the correct reference for MadGraph 5, JHEP 1106(2011)128, arXiv:1106.0522 [hep-ph]. You can still use MadGraph 4 here.

Code can be generated either by:

```
I. Fill the form:
\begin{tabular}{|c|c|c|}
\hline Model: & 5 M - 8 & Model descriptions \\
\hline Input Process: & & Examples/format \\
\hline
\end{tabular}
p and j definitions: p-j=du scd~u~s~c~g ;
sum over leptons: 1+ - e+, mu+ ta+; l- =e-, mu- ta-; vi = ve, vm, vi;vl~ = ve~, vm~, vt~ ;
Submit
```


Web tools: MadGraph, aMC@NLO

aMC@NLO web page

The project

Home
 People
 Contact

News

MC Tools

(registration needed)

Online MC
generation
My DataBase
Codes Download
Compare with
MadLoop
Event samples DB
Communication

Citations
Publications
Talks \& Seminars
Resources
Useful links
File Sharing
sun
Sul.....

MadLoop results for process $u g>t b \sim d$, in the 5 light flavours SM, QED power :

Status: Completed!

- PS point \# 1:

```
Born = +3.47867369141388E-07
    co = -4.62998838291617E-07
    c
    C-2 = -4.57313341661980E-08
```

 \# PDG E \(P_{x} \quad P_{y}\)
 \(12+1.00000000000000 \mathrm{E}+03+0.00000000000000 \mathrm{E}+00+0.00000000000000 \mathrm{E}+00+1.0\)
 \(221+1.00000000000000 \mathrm{E}+03+0.00000000000000 \mathrm{E}+00+0.00000000000000 \mathrm{E}+00-1.0\)
 \(36+9.06726648404084 \mathrm{E}+02+4.02305316456112 \mathrm{E}+01-8.88902778955366 \mathrm{E}+02+2.4\)
 \(4-5+4.46909530065018 \mathrm{E}+02-3.07136746737082 \mathrm{E}+02+3.08528664834847 \mathrm{E}+02-1.0\)
 \(51+6.46363821530899 \mathrm{E}+02+2.66906215091471 \mathrm{E}+02+5.80374114120519 \mathrm{E}+02+9.8\)
 - PS point \# 2:

$$
\text { Born }=+1.55330837443265 \mathrm{E}-06
$$

NLO, does it work?

PP $\rightarrow 4$ jets

W+n jets

Bern et al
[Blackhat]

Yes

Two-loop methods

Laporta algorithm: reduce all tensor integrals to basis of scalar integrals.
Mellin-Barnes transform: $\frac{1}{(A+B)^{\nu}}=\frac{1}{\Gamma(\nu)} \frac{1}{2 \pi i} \int_{C} d z \frac{A^{z}}{B^{\nu+z}} \Gamma(-z) \Gamma(\nu+z)$

- Inverse Feynman parameter trick. Can do FP integrals now easily. Contour integrals automatized (AMBRE) Czakon

Sector decomposition:

- Hack up multi-dimensional FP parameter space, such that I singularity per region.

NNLO

Why/when NLO not enough?

\checkmark When uncertainties at NLO are still large
\checkmark For extracting precise values from data
\checkmark When NLO corrections are large

We have now for hadron colliders:
van Neerven, Harlander, Kilgore, Anastasiou, Melnikov, Ravindran,
Smith, Dixon, Petriello
\checkmark Inclusive W, Z and H cross sections, and rapidity distributions
\checkmark Fully differential V and H production Anastasiou, Melnikov, Petriello; Catani, Grazzini
\checkmark Spacelike, and diagonal time-like, splitting functions

Excitement: NNLO top cross section finally here

(at least for qq->QQ)

Baernreuther, Mitov, Czakon [spring 2012]

$$
\sigma_{\text {tot }}^{\text {res }}=7.067_{-0.232(3.3 \%)}^{+0.143(2.0 \%)}[\text { scales }]_{-0.122(1.7 \%)}^{+0.186(2.6 \%)}[\mathrm{pdf}]
$$

Best prediction at NNLO+NNLL

\checkmark Uncertainty now only a few \% at NNLO.
\checkmark First NNLO calculation with initial hadrons and full color structure

All order QCD: resummation

\checkmark Effects of soft gluons can be summed to all orders
\checkmark Many ways to derive exponential form
\checkmark Algebraic: PT is exponent of "webs", after eikonal approximation Gatheral; Frenkel, Taylor; Sterman
\checkmark Webs: subset of diagrams, with modified color factors
$\hat{O}=1+\alpha_{s}\left(L^{2}+L+1\right)+\alpha_{s}^{2}\left(L^{4}+L^{3}+L^{2}+L+1\right)+\ldots$

+ suppressed terms

\checkmark For Higgs/Drell-Yan inclusive cross section:

$$
\hat{\sigma}_{i}(N)=C\left(\alpha_{s}\right) \times \exp \left[\int_{0}^{1} d z \frac{z^{N-1}-1}{1-z}\left\{2 \int_{\mu_{F}^{2}}^{(1-z)^{2} Q^{2}} \frac{d \mu^{2}}{\mu^{2}} A_{i}\left(\alpha_{s}\left(\mu^{2}\right)\right)+D_{i}\left(\alpha_{s}(1-z) Q^{2}\right)\right\}\right]
$$

Sterman; Catani, Trentadue, Grazzini, de Florian, Forte, Ridolfi, Vogelsang, Kidonakis, EL, Magnea, Stavenga, White, Ridolfi, Moch, Vogt, Eynck, Ravindran, Becher, Neubert, Ji, Idilbi,...

WEBS FOR QCD AMPLITUDES

Gardi, EL, Stavenga, White
Mitov, Sterman, Sung

- Found purely exponential structure

$$
\sum \mathcal{F}(D) C(D)=\exp \left[\sum_{d, d^{\prime}} \mathcal{F}(d) R_{d d^{\prime}} C\left(d^{\prime}\right)\right]
$$

$$
\sum_{d^{\prime}} R_{d d^{\prime}}=0
$$

Eigenvalues 0 or 1

Projector matrix

- multi-parton webs are "closed sets" of diagrams, with modified color factors

(3a)

(3b)

(3c)

$$
\frac{1}{6}[C(3 a)-C(3 b)-C(3 c)+C(3 d)] \times[M(3 a)-2 M(3 b)-2 M(3 c)+M(3 d)]
$$

Resummation

\checkmark State of the art NNLL
\checkmark Different approaches, healthy competition
\checkmark Much progress in analytical understanding:

- Approaching all order knowledge of IR structure of QCD amplitudes

Monte Carlo simulation of QCD

Monte Carlo

Great advances in Monte Carlo in recent years

- Multipurpose: PYTHIA 8 (C++), HERWIG++, SHERPA
- Matrix element based: Alpgen, Madgraph/Madevent, Comphep, Helac
- NLO combined with parton showers:MC@NLO, POWHEG,
- Renaissance after many theorists entered field recently, many new ideas \checkmark..but it don't really count when there ain't code.

Matrix element generators

Good description when no two partons are too collinear, or one is soft

Calculate full tree-level matrix element using

- Diagrams
\checkmark Helicity amplitudes (MadEvent, Amegic++), squared amplitudes (Comphep)
- Leiden recursion relations (Alpgen, Helac/Phegas)
- Always fixed number of partons
\checkmark MadEvent: $2 \rightarrow 6$, HELAC, Alpgen,Amegic++ $2 \rightarrow 8$

Parton showers

Approximate description of matrix element when radiation is mostly collinear and soft

Set up as iterative Markov process

Sudakov form factor: probability of no emission between two emissions (virtual graphs)

$$
\Delta_{i}\left(t_{1}, t_{2}\right)=\exp \left[-\sum_{(j k)} \int_{t_{2}}^{t_{1}} \frac{d t}{t} \frac{\alpha_{S}(t)}{2 \pi} \int d z P_{i, j k}(z) \int \frac{d \varphi}{2 \pi}\right]
$$

Number of partons per event not fixed

How to combine best of both?

Matching ME to PS

CKKW Catani, Krauss, Kuhn, Webber
\checkmark Small (large) angles: use PS (ME)
\checkmark Define matching angle (scale)
\checkmark Above: dress up ME with Sudakov form factors
\checkmark Below: use PS, but don't allow pT above matching scale

MLM Mangano

\checkmark Generate N -jet with ME.
\checkmark Define matching angle (scale) and start PS
\checkmark Demand hard jets have original parton, otherwise reject
\checkmark For each N the shower cannot increase N

Matching NLO to PS

Match to avoid double counting again

- emission from NLO and PS should be counted once
- virtual part of NLO and Sudakov should not overlap
- two main approaches:

Frixione, Webber; Nason
\checkmark MC@NLO exact to NLO, no overshoot, some negative weights
Nason; Frixione, Oleari
\checkmark POWHEG insists on having positive weights, exponentiates complete real matrix element.

Match both to NLO and ME: Vincia

Giele, Kosower, Skands

Effective theory based: GenEvA

Bauer, Tackmann, Thaler

MC@NLO and tit

Frixione, Nason, Webber

- First process in MC@NLO with final state colored partons, multiple color flows
- Interpolates well between NLO and parton showers

Combine the best parts of MC and Feynman-diagram approach

Automatic NLO + PS

- Is well-underway
- POWHEG Box
- aMC@NLO
- Mashups:
- POWHEG + Madgraph4
- Sherpa + MC@NLO

Single top at NLO

s-channel:
timelike W

(1)

(2)
t-channel: spacelike W

(3)

Important process for LHC

- Allows measurement of $\mathrm{V}_{\text {tb }}$ per channel

Easier check of chiral structure of Wtb vertex than ..
Infer the b-density

(a) $\mathrm{p}_{\mathrm{T}}^{\mathrm{t}}[\mathrm{GeV}]$

Included in MC@NLO \& POWHEG

Frixione, EL, Motylinski, Webber

Harris,EL,Phaf,Sullivan, Weinzierl; Cao, Schwienhorst, Yuan; Zhu; Campbell, Ellis, Tramontano

Challenges, an incomplete (wish)list

- Near: Complete full NLO automation
\checkmark fast, accurate, flexible, easy code
\checkmark matched to LL parton showers
- Far-ish: begin NNLO wishlist, leading to automation
\checkmark also NLO QCD + NLO EW corrections
- Near-ish: NLL parton showers, and matching
- Near: Full NNLL resummation for QCD processes
\checkmark including next-to-eikonal corrections

Conclusions

- Remarkable developments in perturbative QCD
\checkmark higher order calculations, Monte Carlo's, and their combinations
\checkmark with some remarkable engineering
- Due to young and experienced researchers alike

QCD theorists are up to the LHC challenge

