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No LHC without understanding QCD

• QCD at the LHC operates in new regime: high energy, large 
multiplicities. It produces interesting needles

‣ Higgs, top, SM, BSM, ...

• and enormous amounts of hay  

‣ Jets, b’s, underlying events, multi-parton scattering

• How to separate? 

‣ Develop/use the best theoretical tools available 

‣ Much interaction among theorists and experimenters
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LHC poses a daunting challenge to QCD theorists



QCD predictions at the LHC

pdf ’s initial state spin etc averaging

phase space integral observable amplitude
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Collins, Soper, Sterman; Bodwin

pdf ’s hard scattering parton
showering hadronization



QCD predictions, simplified
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Tools:

NkLO, MC

PDF’s

αs,..

masses

CKM

Distributions

Events

‣ Each input has uncertainty

‣ Tools have intrinsic accuracy

Cross sections



QCD predictions, less simplified
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DIS data NLO DIS 
theory

Global
Analysis

NLO PDF's
e+e- data

NLO e+e- 
theory

NLO s

NLO LHC 
calculation

Data well described? NNLO? 
Other?

No

Happy?

Yes Limits?

Data more precise than theory



This talk

• Flavor of state-of-the-art in 

‣ LO, NLO, NNLO 

‣ Resummation

‣ Monte Carlo

• with some recent applications and present challenges
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Disclaimer: vastly incomplete referencing



Higher order QCD



LO, NLO cross sections
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dσpp→X

d3p1 . . . d3pn
=

�

a,b

�
dx1dx2fa(x1 , µF )fb(x2 , µF )

× σ̂ab(pa + pb → pX , αs(µR), µR, µF ) +O

�
Λ2

Q2

�

1

Multi-differential hadronic NLO cross section
NLO PDF’s

Multi-differential parton-level NLO cross section Power corrections

Renormalization and Factorization scale

For NNLO, add “N” in all the right places..



Parton distribution functions

✓ There are 13. 

✓ Universal, and crucial for accurate predictions at LHC

✓ Sophisticated approaches, various groups, publicly available  

✓ No time to do justice..
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fi/P (x, µF )

Probability for parton of type “i” inside proton P 
to interact having momentum fraction “x”



Status of Higher Order
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Order 2→ 1 2→ 2 2→ 3 2→ 4 2→ 5 2→ 6
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‣ LO well-understood, now more efficient than ever

‣ NLO: a flood of new developments

‣ NNLO  2→2 starting now..

✓ Show now also start including NLO QCD + EW

‣ NNNLO:  for F2(x,Q),  from same (Nikhef) foundry as NNLO splitting 
functions Moch, Vermaseren, Vogt

NLO
NLO

NLO



Need for computer algebra!!
FORM  Vermaseren



NLO: all it took was a wish...

‣ First composed in Les 
Houches in 2005, added to in 
2007,2009 by Joey Huston

‣ List of “doable” calculations 
needed for LHC

‣ They have now all been done

‣ (except tttt)
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..and a revolution in calculational methods



Nonlinear progress in W+n jets
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D. Maitre, Talk at SM@LHC 
workshop, NBI

Berger, Bern, Dixon, Febres-Cordero, Forde
Ita, Kosower, Maitre



Leading order

• The problem here is not handling divergences, but handling complexity. 
For gg →ng number of diagrams grows factorially

• Nowadays routinely handled:

‣ Madgraph/Madevent (helicity amplitudes), Sherpa/Amegic++, Helac/
Phegas, Alpgen (recursion), Comphep (matrix elements)

✓ after many inventions
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n 2 3 4 5 6 7 8

diagrams 4 25 220 2485 34300 559405 1.05E+07



LO scattering: know your quantum numbers
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A(1±, 2±, . . . , n±)
�pq� ≡ �p− |q+�, [pq] ≡ �p + |q−�

An(1, .., n) = gn−2
�

σ

Tr(T aσ(1) · · ·T aσ(n)) An(σ(1), ..,σ(n))

Color-decomposition� �� �

Color-ordered amplitudes

u+(p) = |p+�, u− = �p − |
helicity 

• For n=6:   34300 →501 color-ordered amplitudes

• Specify all helicities → can use efficient spinor techniques

Atree
n (1+, . . . , j−, . . . , k−, . . . , n+) = i(

√
2)n−2 �jk�4

�12� . . . �n1�

MHV amplitude

Parke, Taylor

• But what about more minuses?

• From twistor approach (Witten): use these as building blocks

−
−

+

+

+

+

Twistor: spinor with half its components Fourier-transformed



Post-twistor recursion

• Construct helicity amplitude by sewing together MHV building blocks 
using 1 propagator.

• Six diagrams only! (Was 220 in this case..)
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Multi-leg processes Stefan Weinzierl
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Figure 5: MHV diagrams contributing to the tree-level six-gluon amplitude A6(1−,2−,3−,4+,5+,6+).

2.3.1 MHV vertices

As an alternative to usual Feynman graphs, tree amplitudes in Yang-Mills theory can be con-

structed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued

off shell in a particular fashion [89]. The basic building blocks are the MHV amplitudes, which

serve as new vertices:

Vn(1
+, ..., j−, ...,k−, ...,n+) = i

(√
2
)n−2 〈 jk〉4

〈12〉...〈n1〉
. (2.34)

Each MHV vertex has exactly two lines carrying negative helicity and at least one line carrying

positive helicity. Each internal line has a positive helicity label on one side and a negative helicity

label on the other side. The propagator for each internal line is the propagator of a scalar particle:

i

k2
(2.35)

The expression (2.34) for the MHV vertices involves spinors corresponding to massless on-shell

momenta k2j = 0. Therefore we have state what this light-like four-vector should be for every

internal line meeting a MHV vertex. As in eq. (2.11) the light-like four-vector can be taken as [90]

k! = k−
k2

2k ·q
q, (2.36)

where k is the momentum flowing through the internal line and q is a fixed light-like reference

momentum. Let us now consider an example. The amplitude A6(1−,2−,3−,4+,5+,6+) has three

gluons of positive helicity and three gluons of negative helicity and is one of the first non-trivial

amplitudes, which are non-zero and which are not MHV amplitudes. Fig. 5 shows the six MHV

diagrams contributing to this amplitude. The first diagram yields
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(
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12

)

〉〈
(

−k!
12

)

1〉

]

i

k212

[

i
(√
2
)3 〈3k!
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〈34〉〈45〉〈56〉〈6k!
12〉〈k!

123〉

]

, (2.37)
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Cachazo, Svrcek, Witten



Pre-twistor recursion (Leiden, 1980’s and 90’s)

‣ Define “currents”: one gluon off-shell,  n off-shell.  Obey “obvious” 
recursion.  

‣ Analytically elegant, numerically efficient, was important for top-quark 
discovery (VECBOS: Berends, Kuijf, Tausk, Giele)
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Multi-leg processes Stefan Weinzierl

...

1n

n + 1 is off-shell

=

n−1
∑

j=1

1jj + 1n

+

n−2
∑

j=1

n−1
∑

k=j+1

1j
j + 1k

k + 1n

Figure 4: Off-shell recurrence relation: In an off-shell current particle n+1 is kept off-shell. This allows to
express an off-shell current with n on-shell legs in terms of currents with fewer legs.

V
µ!"
3 (k1,k2,k3) = i

[

gµ!
(

k
"
1 − k

"
2

)

+g!"
(

k
µ
2 − k

µ
3

)

+g"µ (k!3 − k!1 )
]

,

V
µ!"#
4 = i(2gµ"g!# −gµ!g"# −gµ#g!") . (2.24)

The recurrence relation is shown pictorially in fig. 4. The gluon current Jµ is conserved:

(
n

$
i=1

k
µ
i

)

Jµ = 0. (2.25)

From an off-shell current one easily recovers the on-shell amplitude by removing the extra propa-

gator, taking the leg (n+1) on-shell and contracting with the appropriate polarisation vector.

2.2.4 Parke-Taylor formulæ

The partial amplitudes have for specific helicity combinations remarkably simple analytic for-

mula or vanish altogether. For the all-gluon tree amplitude one finds

An(1
+,2+, ...,n+) = 0,

An(1
+,2+, ..., j−, ...,n+) = 0,

An(1
+,2+, ..., j−, ...,k−, ...,n+) = i

(√
2
)n−2 〈 jk〉4

〈12〉...〈n1〉
. (2.26)

The partial amplitudes where all gluons have positive helicities, or where all gluons except one

have positive helicities vanish. The first non-vanishing result is obtained for the n-gluon amplitude

with n−2 gluons of positive helicity and 2 gluons of negative helicity. It is given by a remarkable
simple formula. Note that this formula holds for all n. An amplitude with n−2 gluons of positive
helicity and 2 gluons of negative helicity is called a maximal-helicity violating amplitude (MHV

amplitude). Obviously, we find similar formulæ if we exchange all positive and negative helicities:

An(1
−,2−, ...,n−) = 0,

An(1
−,2−, ..., j+, ...,n−) = 0,

An(1
−,2−, ..., j+, ...,k+, ...,n−) = i

(√
2
)n−2 [k j]4

[1n][n(n−1)]...[21]
. (2.27)

These formulæ have been conjectured by Parke and Taylor [83] and have been proven by Berends

and Giele [3].
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Berends, Giele

What is faster, the old or the new?



Speed
Final BG BCF CSW

State CO CD CO CD CO CD
2g 0.24 0.28 0.28 0.33 0.31 0.26
3g 0.45 0.48 0.42 0.51 0.57 0.55
4g 1.20 1.04 0.84 1.32 1.63 1.75
5g 3.78 2.69 2.59 7.26 5.95 5.96
6g 14.2 7.19 11.9 59.1 27.8 30.6
7g 58.5 23.7 73.6 646 146 195
8g 276 82.1 597 8690 919 1890
9g 1450 270 5900 127000 6310 29700
10g 7960 864 64000 - 48900 -

Tab. 3: Computation time (s) of the 2 → n gluon amplitudes for 104 phase space
points, sampled over helicity and color. Results are given for the color-ordered
(CO) and the color-dressed (CD) Berends-Giele (BG), Britto-Cachazo-Feng
(BCF) and Cachazo-Svrček-Witten (CSW) relations. Numbers were generated
on a 2.66 GHz XeonTM CPU.

It is apparent that the computation times in the color-dressed BCF and in the color-dressed

CSW case grow very fast. In the case of the CSW relations the reason is the number of types
of internal lines, which is larger than in the Berends-Giele and in the BCF approach. In this

respect it is important to note that each double line may eventually carry zero, one or two

indices of attached negative helicity gluons. Additionally, in most cases two vertices exist

for either of these lines (cf. Table 1), yielding a large amount of lines that finally have to be

computed. However, the growth we encounter by employing this method is still not factorial

but exponential. Nevertheless the factor in the exponent is still too large for the method to
be competitive with the Berends-Giele approach. This fact is illustrated in Table 4, where

we list the average number of nonzero internal lines counted either by value or by origination

vertex. The former corresponds to the average number of nonzero currents in the Berends-

Giele approach.

Employing the color-dressed BCF relations, we encounter a factorial growth of the compu-

tation time. We have identified three main reasons:

- The subamplitudes are linked by the spinor shifts.

- The natural color basis is the adjoint basis.

- The amplitudes are decomposed down to three-point vertices.

We address these points in order.

In the color-dressed as well as in the color-ordered BCF relations, Eqs. (4.1) and (4.12),

the subamplitudes of a given decomposition are linked via the shifts Eqs. (4.2-4.4). Thus
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Duhr, Hoche, Maltoni

n 4 5 6 7 8 9 10 11 12

Berends-Giele 0.00005 0.00023 0.0009 0.003 0.011 0.030 0.09 0.27 0.7

Scalar 0.00008 0.00046 0.0018 0.006 0.019 0.057 0.16 0.4 1

MHV 0.00001 0.00040 0.0042 0.033 0.24 1.77 13 81 —

BCF 0.00001 0.00007 0.0003 0.001 0.006 0.037 0.19 0.97 5.5

Table 1: CPU time in seconds for the computation of the n gluon amplitude on a standard PC (2

GHz Pentium IV), summed over all helicities.

3 Performance and numerical stability

3.1 Performance

We have implemented all four methods into numerical programs. For an unbiased comparison of

the efficiencies of the different methods, each author has programmed all four methods indepen-

dently, in order to eliminate possible dependencies on the programming skills of the programmer.

It turned out that all programs gave the same pattern in the study of efficiency and accuracy.

All methods give identical results within an accuracy of 10−12 for randomly chosen non-
exceptional phase space points and up to 12 external particles. To investigate the performance in

terms of CPU time we study the quantity M n defined in eq. (3):

M n = !
"1,...,"n

∣

∣

∣
An

(

k
"1
1 , ...,k"nn

)
∣

∣

∣

2

. (41)

It is clear from the algorithms that the first two methods (Berends-Giele and scalar diagrams)

need a constant amount of CPU time for each helicity configuration, whereas the last two meth-

ods (MHV and BCF) are very efficient if the helicities are predominately all plus or all minus,

but take more CPU time if the helicity configuration contains roughly the same number of plus

and minus helicities. To compare the different methods, the quantity M n sums over all helicity

configurations. This corresponds to the situation encountered in the calculation of cross-sections

and observables. Table 1 shows the CPU time needed for the computation ofM n as n varies from

4 to 12. The test was done on a standard PC with a 2 GHz Pentium IV processor.

As can be seen from the table, the Berends-Giele type recurrence relation is the fastest

method, as the number of external gluons increases. In second place comes the method with

scalar diagrams. As already discussed in the presentation of the algorithms, these two methods

are fast due to the fact that they can work with a static list of four-momenta and helicities. This

avoids copying large amounts of data at each step of the recursion. The scalar diagram technique

allows for a higher degree of optimisation in the subroutines, but this is out-weighted by the fact

that in the Berends-Giele method each three- or four-valent vertex is called exactly once, whereas

in the scalar diagram method each vertex is called three times with different helicity configura-

tions. Table 2 shows the timings for the Berends-Giele method and the scalar diagram method

for the computation ofM n as n varies from 13 to 20. It should be noted that for n= 20 the results
of the two methods agree within 10−11. It can be seen from tables 1 and 2 that the time required
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Dinsdale,  Ternick, Weinzier

The old is still faster (except for MHV)...
Badger, Biedemann, Hackl, Plefka, Schuster, Uwer



LO, NLO, etc
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σ̂(1)

σ̂(2)

σ̂(0)

q

Z e−

e+

q̄
Combine with PDF’s,
put in MC integrator,

apply cuts etc 

� �� �

NNLO

NLO

LO

Cancel  IR poles 1/ε2    before
anything else

Calculate in D=4-2ε dimensions

� �� �

1 loop 1 extra parton

� �� �

2 loop

� �� �� �� �
1 loop + 

1 extra parton
2 extra partons

Cancel IR poles 1/ε4    etc before
anything else; hard!



Handling intermediate IR divergences

• Subtraction schemes (Ellis, Ross, Terrano): find clever 

‣ Dipole (Catani, Seymour):  emitter + spectator + soft-collinear parton

✓ Color-charge operators;  collinear split + half of soft

‣ Antenna (Kosower): 2 radiators + soft-collinear parton

✓ Color-ordering;  soft + half collinear splits

‣ FKS (Frixione, Kunszt, Signer): isolate each singularity with projectors. Use plus prescriptions 
to define IR-finite part.

•
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Why go beyond LO?
• Precision!

‣ Accurate prediction of production rates

‣ Better modelling of distribution shapes due to extra partons

‣ Self-diagnostics of PT

‣ New channels open up beyond LO, not necessarily small

21

Anastasiou, Petriello, Melnikov



NLO benefit
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D. Maitre, Talk at SM@LHC 
workshop, NBI, April 2012



One-loop revolution
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1

Vermaseren, van Neerven; Bern, Dixon, Kosower,...

• Since boxes, triangles etc are standard basis: find coefficients

• Many ideas based on unitarity:  construct a function from its poles and 
branch cuts

‣ poles: lower # of external lines

‣ branch cuts: lower # of loops

=
∑

i ai + +
∑

i ci

∑

i bi
∑

i di+

=

Pole



Generalized unitarity
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Replace  propagator by cut one, 
as in phase space
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• Basis set of integrals

✓ Calculate cuts of M on left

✓ Cut on right only in Boxes etc

✓ Match, find coefficients  a,b,c,d

✓ Use other methods to find Rational term

Bern, Dixon, Dunbar, Kosower, Britto, Cachazo, Feng, Anastasiou, Kunszt, Mastrolia



More one-loop ideas

✓ Numerical loop integration  

✓ Numerical solution to BG recursions

✓ Better Passarino-Veltman 

✓ Sector decomposition of multiple Feynman parameter integrals plus 
contour deformation

✓ Algebraic inversion of coefficients of scalar integrals at integrand 
level, using unitarity conditions, and partial fractioning (pp→ VVV)

• Lively marketplace of ideas, now settling on a few vendors
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Iµ1µ2...µn =

�
d

D
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(2π)D
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F (z)

w − z

pk(z) = λk(λ̃k̇ − zλ̃ṅ)

pn(z) = (λn + zλk)λ̃ṅ

pk(z) + pn(z) = pk + pn

An(λ1, λ̃1̇, . . . ,λn, λ̃ṅ), pµσ
µ
aȧ = λaλ̃ȧ

Process Status
pp→ tt̄ + jet
pp→ V + 2 jets(b)
pp→ Hbb̄

pp→ HHH

pp→ H + 2jets via gluon fusion
pp→ H + 2, 3 jets via VBF

Process Background to/relevant for Status
pp→ V V + jet tt̄H, new physics W

+
W
− + jet

pp→ H + 2 jets H production via VBF
pp→ tt̄bb̄ tt̄H, new physics
pp→ tt̄ + 2 jets tt̄H, new physics tt̄ + jets (’07)
pp→ V V bb̄ V BF → H → V V , tt̄H, new physics
pp→ V V + 2 jets V BF → H → V V

pp→ V + 3 jets new physics
pp→ V V V new physics ZZZ (07), WWZ (’07), V V V (’08)

1

p2 + i�
−→ −i2πδ+(p2)

1

Tensor integral

Ossola, Papadopoulos, Pittau
Ellis, Giele, Kunszt; Melnikov

Ellis, Giele, Zanderighi

Nagy, Soper

Denner, Dittmaier; Binoth, Guillet, Pilon, Heinrich, Schubert

Anastasiou, Beerli, Daleo
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pk(z) + pn(z) = pk + pn

An(λ1, λ̃1̇, . . . ,λn, λ̃ṅ), pµσ
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Process Status
pp→ tt̄ + jet
pp→ V + 2 jets(b)
pp→ Hbb̄

pp→ HHH

pp→ H + 2jets via gluon fusion
pp→ H + 2, 3 jets via VBF

Process Background to/relevant for Status
pp→ V V + jet tt̄H, new physics W

+
W
− + jet

pp→ H + 2 jets H production via VBF
pp→ tt̄bb̄ tt̄H, new physics
pp→ tt̄ + 2 jets tt̄H, new physics tt̄ + jets (’07)
pp→ V V bb̄ V BF → H → V V , tt̄H, new physics
pp→ V V + 2 jets V BF → H → V V

pp→ V + 3 jets new physics
pp→ V V V new physics ZZZ (07), WWZ (’07), V V V (’08)
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Web tools: MadGraph, aMC@NLO
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Web tools: MadGraph, aMC@NLO
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NLO, does it work?

27

Bern et al
[Blackhat]

pp → 4 jets

Yes

W+n jets



Two-loop methods

• Laporta algorithm: reduce all tensor integrals to basis of scalar 
integrals. 

• Mellin-Barnes transform:

‣ Inverse Feynman parameter trick. Can do FP integrals now easily. 
Contour integrals automatized (AMBRE) 

• Sector decomposition:

‣ Hack up multi-dimensional FP parameter space, such that 1 
singularity per region.

28
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Figure 1: Sector decomposition schematically.
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1 + (1 − y) t
)−1
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We observe that the singularities are now factorised such that they can be read off
from the powers of simple monomials in the integration variables, while the polynomial
denominator goes to a constant if the integration variables approach zero. The same
concept will be applied to N -dimensional parameter integrals over polynomials raised
to some power, where the procedure in general has to be iterated to achieve complete
factorisation.

3 The algorithm for multi-loop integrals
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Czakon

Binoth, Heinrich; Roth, Denner



NNLO
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• Why/when NLO not enough?

✓ When uncertainties at NLO are still large

✓ For extracting precise values from data

✓ When NLO corrections are large

Anastasiou, Petriello, Melnikov

• We have now for hadron colliders:

✓ Inclusive  W,Z and H cross sections, and rapidity distributions

✓ Fully differential  V and H production

✓ Spacelike, and diagonal time-like, splitting functions
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Excitement: NNLO top cross section finally here
(at least for qq->QQ)

✓ Uncertainty now only a few % at NNLO.  

✓ First NNLO calculation with initial hadrons and full color structure

30

Baernreuther, Mitov, Czakon
[spring 2012]



All order QCD: resummation
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Ô = 1 + αs(L2 + L + 1) + α
2
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constants

+ suppressed terms

+

✓ Effects of soft gluons can be summed 
to all orders

✓ Many ways to derive exponential form

✓ Algebraic: PT is exponent of “webs”, 
after eikonal approximation

✓ Webs: subset of diagrams, with 
modified color factors

✓ For Higgs/Drell-Yan inclusive cross 
section:

Gatheral; Frenkel, 
Taylor; Sterman
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Sterman; Catani, Trentadue, Grazzini, de Florian, Forte, Ridolfi, Vogelsang, Kidonakis,  EL, Magnea, Stavenga, 
White, Ridolfi, Moch, Vogt, Eynck, Ravindran, Becher, Neubert, Ji, Idilbi,...



WEBS FOR QCD AMPLITUDES

Found purely exponential structure

 

multi-parton webs are “closed sets” of diagrams, with modified color 
factors
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Gardi, EL, Stavenga, White

Mitov, Sterman, Sung



Resummation
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✓ State of the art NNLL

✓ Different approaches, healthy competition

✓ Much progress in analytical understanding:

• Approaching all order knowledge of IR structure of QCD amplitudes

•



Monte Carlo simulation of QCD



Monte Carlo

• Great advances in Monte Carlo in recent years

‣ Multipurpose:  PYTHIA 8 (C++), HERWIG++,  SHERPA

‣ Matrix element based:  Alpgen, Madgraph/Madevent, Comphep, Helac

‣ NLO combined with parton showers: MC@NLO, POWHEG, 

‣ Renaissance after many theorists entered field recently, many new ideas 

✓ ..but it don’t really count when there ain’t code.
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Matrix element generators

• Calculate full tree-level matrix element using

‣ Diagrams

✓ Helicity amplitudes (MadEvent,  Amegic++), squared amplitudes (Comphep)

‣ Leiden recursion relations (Alpgen, Helac/Phegas) 

‣ Always fixed number of partons

✓ MadEvent: 2 → 6, HELAC, Alpgen, Amegic++ 2 → 8
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Good description when no two partons are too collinear, or one is soft



Parton showers
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Final recipe II

• include a factor ∆i(t1, t2) to each internal parton i, from hardness t1 to hardness t2.

∆i(t1, t2) = exp



− !
( jk)

∫ t1

t2

dt

t

αS(t)
2π

∫

dz Pi, jk(z)
∫
dϕ

2π





Theweights∆i(t1, t2) are called Sudakov form factors. They resum all the dominant

virtual corrections to the tree graph (in the collinear approximation).

Notice that, when t2 " t1, ∆→ 0, i.e. the probability that a hard parton turns into a
narrow jet, or that it does not radiate at all, is small (it is Sudakov suppressed)

• include a factor ∆i(t , t0) on final lines (t0 = IR cutoff)

Carlo Oleari Matching NLO Calculations with Parton Shower: the POsitive-Weight Hardest Emission Generator 6
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Approximate description of matrix element
when radiation is mostly collinear and soft

Sudakov form factor: probability of no emission
between two emissions (virtual graphs)

Set up as iterative Markov process

based on factorization of matrix element 
and phase

How to combine best of both?

Number of partons per event not fixed



Matching ME to PS

✓ Small (large) angles: use PS (ME)

✓ Define matching angle (scale)

✓ Above: dress up ME with Sudakov 
form factors

✓ Below: use PS, but don’t allow pT 
above matching scale

38

CKKW Catani, Krauss, Kuhn, Webber

✓ Generate N-jet with ME. 

✓ Define matching angle (scale) 
and start PS

✓ Demand hard jets have 
original parton, otherwise 
reject

✓ For each N the shower 
cannot increase N

MLM Mangano



Matching NLO to PS

• Match to avoid double counting again

‣ emission from NLO and PS should be counted once

‣ virtual part of NLO and Sudakov should not overlap

‣ two main approaches:

✓ MC@NLO exact to NLO, no overshoot, some negative weights

✓ POWHEG insists on having positive weights,  exponentiates complete real 
matrix element. 
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Match both to NLO 
and ME:  Vincia

Giele, Kosower, Skands

Frixione, Webber; Nason

Nason; Frixione, Oleari

Effective theory 
based: GenEvA

Bauer, Tackmann, 
Thaler

tt̄ production

Good agreement for all observables considered. There are sizable differences that can be

ascribed to different treatment of higher terms. But more investigation needed (different

scale choices, no truncated shower, different hard/soft radiation emission,. . . ).

Carlo Oleari Matching NLO Calculations with Parton Shower: the POsitive-Weight Hardest Emission Generator 21



MC@NLO and tt

‣ First process in MC@NLO with final state colored partons, multiple color flows

‣ Interpolates well between NLO  and parton showers

Frixione, Nason, Webber

40

Combine the best 
parts of MC and 
Feynman-diagram 
approach



Automatic NLO + PS

‣ Is well-underway

• POWHEG Box

• aMC@NLO

‣ Mashups: 

• POWHEG + Madgraph4

• Sherpa + MC@NLO

• ...

41



Single top at NLO

• Important process for LHC

‣ Allows measurement of  Vtb per channel

‣ Easier check of chiral structure of Wtb vertex than tt

‣ Infer the b-density

‣ Sensitive to FCNC’s (t-channel), or W’ resonances (s-channel)

s-channel: 
timelike W t-channel: 

spacelike W
Wt channel: real W

Harris,EL,Phaf,Sullivan, Weinzierl; Cao, Schwienhorst, Yuan; Zhu; Campbell, Ellis, Tramontano
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Included in MC@NLO & 
POWHEG

Frixione, EL, Motylinski, Webber



Challenges, an incomplete (wish)list

‣ Near: Complete full NLO automation

✓ fast, accurate, flexible, easy code

✓ matched to LL parton showers

‣ Far-ish: begin NNLO wishlist, leading to automation

✓ also NLO QCD + NLO EW corrections

‣ Near-ish: NLL parton showers, and matching

‣ Near: Full NNLL resummation for QCD processes

✓ including next-to-eikonal corrections
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Conclusions

‣ Remarkable developments in perturbative QCD

✓ higher order calculations, Monte Carlo’s, and their combinations

✓ with some remarkable engineering

‣ Due to young and experienced researchers alike

•
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QCD theorists are up to the LHC challenge 


