Correlation measurements in beta decay probing physics beyond the standard model

Outline

- structure of the weak interaction

physics:scalar or tensor componentsobservables:βν correlation, β-asymmetry parameter

- parity symmetry

observable: polarization-asymmetry correlation

the Standard Model and beyond:

*
$$C_V = 1$$
 (CVC)
* $C_A = -1.27$ ($g_A/g_V = -1.2699(7)$ from n-decay)
* $C_V = C_V & C_A = C_A$ (maximal P-violation)

*
$$C_{S} = C_{S}' = C_{T} = C_{T}' = C_{P} = C_{P}' \equiv 0$$

(only V- and A-currents)

experimental upper limits:

(neutron and nuclear β-decay)

 $\left| C_{T}^{(')} / C_{A} \right| < 0.09$ $\left| C_{S}^{(')} / C_{V} \right| < 0.07$ (95% CL)

from: N. Severijns, M. Beck, O. Naviliat-Cuncic, Rev. Mod. Phys. 78 (2006) 991

* no time reversal violation

(except for the CP-violation described by the phase in the CKM matrix)

The βv correlation

(assuming maximal P-violation and T-invariance for V and A interactions)

!!! for pure transitions weak interaction info independent of nuclear matrix elements **!!!**

recoil corr. (induced form factors) $\approx 10^{-3}$; radiative corrections $\approx 10^{-4}$

lon/atom traps for βv correlation measurements

Particle traps: ideal sources

- sample is isotopically pure
- localized in a small volume
- atoms decay at rest
- detection of recoil ion
- negligible source scattering
- potential for polarized sample

TRINAT MOT trap at TRIUMF-ISAC – ^{38m}K - scalar

LPCTrap @ GANIL - ⁶He - tensor

3.1% precision result: the most precise in a GT decay, from a measurement in coincidences.

WITCH @ ISOLDE - ³⁵Ar - scalar

(K.U.Leuven, Univ. Munster, ISOLDE, NPI Rez-Prague, LPC-Caen)

<u>Goal</u> : determine βv correlation for ³⁵Ar with ($\Delta a/a$)_{stat} ≤ 0.5 %

 \rightarrow measure energy spectrum of recoiling ions with a retardation spectrometer

M. Beck et al., Eur. Phys. J. A47 (2011) 45
M. Tandecki et al., NIM A629 (2011) 396
S. Van Gorp et al., NIM A638 (2011) 192

Nathal Sovariina SSB2012 Graningan Juna 18 22 2012

First results with ³⁵Ar from the WITCH experiment - June and Nov 2011

aSPECT retardation spectrometer for n-decay

(Mainz, Karlsruhe, Virginia - W. Heil et al.)

Most precise βv correlation measurements

³²Ar – Adelberger et al., PRL 83 (1998) 1299

 $\tilde{a} = 0.9989 \pm 0.0052_{stat} \pm 0.0039_{syst}$ ($\tilde{a}_{SM} = 1$)

⁶He - C. Jonhson et al., PR (1963) 055101

 $\tilde{a} = -0.3308 \pm 0.0030$ ($\tilde{a}_{SM} = -0.3333$)

^{38m}K – A. Gorelov, J.A. Behr et al., PRL 94 (2005) 142501 $\tilde{a} = 0.9981 \pm 0.0030_{\text{trart}} \pm 0.0034_{\text{mart}}$ ($\tilde{a}_{\text{SM}} = 1$)

²¹Na – P. Vetter, S.J. Freedman et al., PR C 77 (2008) 035502 $\tilde{a} = 0.5502 \pm 0.0038_{stat} \pm 0.0046_{syst}$ ($\tilde{a}_{SM} = 0.5587(27)$)

⁶He - X. Flechard et al., J. Phys. G 38 (2011) 055101

 $\tilde{a} = -0.3335 \pm 0.0073_{\text{stat}} \pm 0.0075_{\text{syst}}$ ($\tilde{a}_{SM} = -0.3333$)

Present βv correlation projects

nr	ecision a	oals: $0.5\% \rightarrow$			Fermi (*)	(*) pure or dominan		
						Mixed		
						Gamow-Te	ller (*)	
P	Parent	Technique	Group, Lab					
35	Ar	Penning trap	Leuven+/ISOLDE		o o llo b o roti o	lata luna 2011		
35	Ar	Paul trap	LPC+/GANIL		collaboration - first data June 2011			
38	™K	МОТ	SFU+/TRIUMF		Gorelov et al., PRL 94 (2005) 142501; upgrade in progress			
21	Na	МОТ	Berkeley		Vetter et al., PRC 77 (2008) 035502; upgrade in progress			
21	Na	МОТ	KVI-Groningen		in progress	S		
⁶	le	Paul trap	LPC+/GANIL		X. Fléchard et upgrade in prog	al., J.Phys.G gress	38 (2011) 055101	
⁸ L	_i	Paul trap; $\beta \alpha$	ANL+		in progress	S		
6	le	MOT	ANL+/CENPA		in progress	S		
6 	He/ ⁸ Li	EIBT	WIS (SOREQ)		in progress	S		
⁸ H	le	βγ	NSCL+		in progress	S		

ARIS 2011, May 29 - June 3, 2011, Leuven, Belgium

The β asymmetry parameter

$$W(\theta) = 1 + \tilde{A} \frac{\bar{J}}{J} \cdot \frac{\bar{p}}{E_e} \quad \text{with} \quad \tilde{A} = \frac{A}{1 + b \frac{\gamma m_e}{E_e}} \qquad \mathbf{J} \stackrel{\theta}{\downarrow} \boldsymbol{\beta}$$

for a pure Gamow-Teller transition :

$$\widetilde{A}(\beta^{\mp}) \cong \lambda_{JJ} \left[\mp 1 + \frac{\gamma m}{E_e} \operatorname{Re} \left(\frac{C_T + C_T}{C_A} \right) \right] \left[\gamma = \sqrt{1 - (\alpha Z)^2} \right]$$

$$\Delta \widetilde{A} = 0.01 \rightarrow \text{(for } \gamma m/E_e \cong 0.5) \quad \operatorname{Re} \left[(C_T + C_T') / C_A \right] < 0.033 \quad (90\% \text{ CL})$$

(assuming maximal P-violation and T-invariance for V and A interactions)

recoil corr. (induced form factors) $\approx 10^{-3}$; radiative corrections $\approx 10^{-4}$ A_{GT} independent of nuclear matrix elements

β-asymmetry parameter: a new approach (K.U.Leuven, NICOLE-ISOLDE, NPI Rez-Prague, Uni Bonn)

 $^{60}Co\underline{Cu}$, $B_{ext} = 13 T$

 114 In<u>Fe</u>, B_{hf} = 27 T

F. Wauters, I. Kraev, D. Zakoucky, N. Severijns et al.

IS431-experiment

β asymmetry parameter – Leuven / ISOLDE

On-line setup

ISOLDE - NICOLE Louvain-la-Neuve - KOOL Leuven

Leuven

COLE/ISOLDE

Nathal Severijns – SSP2012, Groningen, June 18-22, 2012

Nathal Severijns - SSP2012, Groningen, June 18-22, 2012

Constraints on exotic weak couplings

Within JTW phenomenological parameterization for allowed beta decay N. S. and O. Naviliat-Cuncic, Ann. Rev. Nucl. Part. Sci. 61 (2011) 23

JTW: Jackson, Treiman and Wyld, NP 4 (1957) 206

Next step 1: polarizing atoms/ions in a particle trap

- Paul trap : optical pumping of ion cloud (LPC-GANIL) in magnetic holding field

- Penning trap : collinear polarization by optical pumping (WITCH-ISOLDE, DESIR) in beam line before trap

B

end cap

- MOT trap :

optical pumping of ion cloud (TRIUMF, Berkeley, KVI) in magnetic holding field

Nathal Severijns – SSP2012, Groningen, June 18-22, 2012

Polarization by optical pumping and determination of nuclear polarization via photoionization in a MOT

³⁷K
$$\langle P_{\sigma^+} \rangle = (+97.7 \pm 0.4^{+0.2}_{-0.5})\%$$

 $\langle P_{\sigma^-} \rangle = (-95.8 \pm 1.0^{-0.4}_{+1.3})\%$
⁸⁰Rb $P = 0.53 \pm 0.03$

D. Melconian, J.A. Behr et al., Phys. Lett. B 649 (2007) 370 $B_{\nu}({}^{37}K) = -0.755(24)$ [$B_{\nu}{}^{SM} = -0.779(6)$]

J.R.A. Pitcairn, J.A. Behr et al., Phys. Rev. C79 (2009) 015501

$$A_{recoil}^{^{80}Rb} = (A_{\beta} + B_{\nu})^{^{80}Rb} = 0.015 \ (29) \ (19) \qquad [(A_{\beta} + B_{\nu})^{^{SM}} = 0]$$

Nathal Severijns - SSP2012, Groningen, June 18-22, 2012

Next step 2: include recoil / induced corrections

Outline

- structure of the weak interaction

physics:scalar or tensor componentsobservables:βν correlation, β-asymmetry parameter

- parity symmetry

observable: polarization-asymmetry correlation

Testing parity violation in nuclear β -decay \rightarrow 'beyond' the experiments of Wu et al.

 $\frac{\text{Manifest Left-Right}}{\text{Symmetric models}}$ $W = W_{L} \cos\zeta - W_{R} \sin\zeta$

 $\delta = m_1^2 / m_2^2$; $\zeta \le 0.0001$

= Ψ_L sinζ +<mark>(</mark>W_R)cosζ

 $R = (P^{-}/P^{+}) = R_{SM} [1 + k (\delta + \zeta)^{2}]$ ratio of the

longitudinal polarisation of positrons emitted anti-parallel and parallel to the spin of the nuclei physics beyond the Standard Model

observable	<u>isotope</u>	<u>(δ+ζ)</u> ²						
P ⁻ / P ⁺	¹⁰⁷ ln	-0.0003(58)	1)					
P ⁻ / P ⁺	¹² N	0.0064(76)	²)					
P ⁻ / P ⁺	¹² N	-0.0001(34)	3)					
P ⁻ / P ⁰	¹⁰⁷ ln	0.0021(17)	4)					
average: (δ + ζ) ² = 0.0017(14)								
→ m ₂ > 320 GeV/c ² (90% CL)								

- 1) N. Severijns et al., PRL 70 (1993) 4047, PRL 73 (1994) 611
- 2) M. Allet et al., Phys. Lett. B363 (1996) 139
- 3) E. Thomas et al., Nucl. Phys. A694 (2001) 559
- 4) N. Severijns et al., Nucl. Phys. A629 (1998) 423c

experiments at Louvain-la-Neuve and at the Paul Scherrer Institute

Status of present limits

Nuclear β-decay

μ-decay (TWIST@TRIUMF)

Figure 4

Constraints on the right-handed current parameters δ and ζ from measurements of different observables in nuclear β decay, including the test of unitarity of the quark-mixing matrix (*black*) (14); measurements of the β -asymmetry parameter in the decays of ¹⁹Ne (gray) (25, 88), ¹¹⁴In (39), and ⁶⁰Co (40) (red); relative measurements of the longitudinal polarization of β particles in pure Fermi (F) and Gamow-Teller (GT) transitions (P_F/P_{GT}) (green) (100, 101); and relative measurements of the longitudinal polarization of β particles emitted from polarized nuclei (*blue*) (105–107). The regions bounded by the colored lines are allowed.

experimental quantity

 $B_{LRS} = B_{SM} [1 - 2 \delta^2 - 1.21 \zeta^2 - 2.42 \delta \zeta]$

 $B_{SM} = 2(\lambda^2 - \lambda) / (1 + 3\lambda^2) = 0.9875(1)$ with $\lambda = g_A/g_V = -1.2699(7)$

<u>Results :</u>

B_n = 0.9801(46) A.P. Serebrov et al., JETP 86 (1998) 1074 I.A. Kuznetsov et al., PRL 75 (1995) 794

> B_n = 0.9802(50) M. Schumann, H. Abele et al., PRL 99 (2007) 191803

 $M_{W_2} > 270 \text{ GeV/c}^2$ (90 % C.L.)

G. Konrad et al., arXiv:1007.3027

New polarisation-asymmetry correlation measurement

- double-arm polarimeter
- 2 Tesla field (analyzing power)
- ²³Mg for controlling systematics
- good energy resolution is critical

NSCL-Michigan State Univ. courtesy O. Naviliat-Cuncic

Summary

Recent measurements of βv angular correlation and β asymmetry parameter for nuclear β decays \rightarrow improved limits on scalar and tensor charged weak currents;

New βv correlation measurements using different methods are ongoing/planned (nuclear decays and free neutron decay);

Further development of **polarized samples in particle traps** will significantly enlarge the possibilities to search for exotic currents and test symmetries of weak interaction;

This also requires **induced terms** as well as radiative corrections to be included.

New **polarization asymmetry correlation** measurement **sensitive to P violation** planned.

\rightarrow many new results to be expected in the coming years

Complementarity of beta decay RHC results and collider results, in general LRS models

E. Thomas et al., Nucl. Phys. A 694 (2001) 559