Hadronic parity violation in $d\gamma \rightarrow np$ at low energies

Chang Ho Hyun Daegu University, Republic of Korea

5th International Symposium on Symmetries in Subatomic Physics Groningen, June 19, 2012

Outline

- Current Status
- ✤ What and How
- ✤ Results
- Conclusion

Current Status

- Parity-violating (PV) nuclear forces: believed to be originated from weak interactions
- Understanding the interactions from the first principles: QCD, standard model
- Follow the tradition : meson exchange picture
- Or rely on new methods: effective field theory (EFT)

Meson exchange PV potential: DDH potential

$$V_{\mathrm{PV}}(\boldsymbol{r}) = V_{\mathrm{PV}}^{\pi}(\boldsymbol{r}) + V_{\mathrm{PV}}^{\rho}(\boldsymbol{r}) + V_{\mathrm{PV}}^{\omega}(\boldsymbol{r}),$$

$$\begin{split} V_{\rm PV}^{\pi}(\mathbf{r}) &= i \frac{g_{\pi N N} h_{\pi}^{1}}{2\sqrt{2}m_{N}} (\mathbf{\tau}_{1} \times \mathbf{\tau}_{2})^{z} (\mathbf{\sigma}_{1} + \mathbf{\sigma}_{2}) \cdot [\mathbf{p}, f_{\pi}(r)], \\ V_{\rm PV}^{\rho}(\mathbf{r}) &= -\frac{g_{\rho N N}}{m_{N}} \left[\left(h_{\rho}^{0} \mathbf{\tau}_{1} \cdot \mathbf{\tau}_{2} + \frac{1}{2} h_{\rho}^{1} (\tau_{1}^{z} + \tau_{2}^{z}) + \frac{h_{\rho}^{2}}{2\sqrt{6}} (3\tau_{1}^{z}\tau_{2}^{z} - \mathbf{\tau}_{1} \cdot \mathbf{\tau}_{2}) \right) \times \\ &\quad ((\mathbf{\sigma}_{1} - \mathbf{\sigma}_{2}) \cdot \{\mathbf{p}, f_{\rho}(r)\} + i(1 + \chi_{\rho}) (\mathbf{\sigma}_{1} \times \mathbf{\sigma}_{2}) \cdot [\mathbf{p}, f_{\rho}(r)]) \\ &\quad + i \frac{h_{\rho}^{1}}{2} (\mathbf{\tau}_{1} \times \mathbf{\tau}_{2})^{z} (\mathbf{\sigma}_{1} + \mathbf{\sigma}_{2}) \cdot [\mathbf{p}, f_{\rho}(r)] - \frac{h_{\rho}^{1}}{2} (\tau_{1}^{z} - \tau_{2}^{z})(\mathbf{\sigma}_{1} + \mathbf{\sigma}_{2}) \cdot \{\mathbf{p}, f_{\rho}(r)\} \right], \\ V_{\rm PV}^{\omega}(\mathbf{r}) &= -\frac{g_{\omega N N}}{m_{N}} \left[\left(h_{\omega}^{0} + \frac{1}{2} h_{\omega}^{1} (\tau_{1}^{z} + \tau_{2}^{z}) \right) \times \\ &\quad ((\mathbf{\sigma}_{1} - \mathbf{\sigma}_{2}) \cdot \{\mathbf{p}, f_{\omega}(r)\} + i(1 + \chi_{\omega}) (\mathbf{\sigma}_{1} \times \mathbf{\sigma}_{2}) \cdot [\mathbf{p}, f_{\omega}(r)]) \\ &\quad + \frac{h_{\omega}^{1}}{2} (\tau_{1}^{z} - \tau_{2}^{z})(\mathbf{\sigma}_{1} + \mathbf{\sigma}_{2}) \cdot \{\mathbf{p}, f_{\omega}(r)\} \right] \end{split}$$

Issues with DDH potential

- Correct form?
- Missing term?
- Value of the coupling constants?

Predicted values for the PV coupling constants

$h_i \times 10^7$	h^1_{π}	$h^0_{\ ho}$	h^1_{ρ}	$h^2_{ m ho}$	h^0_{ω}	h^1_{ω}
DDH	4.6	-11.4	-0.2	-9.5	-1.9	-1.1
Skyrme	1.0	-3.7	-0.1	-3.3	-1.4	-1.0
Sum rule	3.0	•	•	•	•	•
Lattice	1.0±0.5	•	•	•	•	•
Chiral quark	0.1	•	•	•	•	•

PV observables and data in the few-nucleon systems

Process (MeV)	Observable	Exp. (×10 ⁷)
pp scat. (13.6)	Longitudinal asymmetry	-0.93 ± 0.21
pp scat. (45)	Longitudinal asymmetry	-1.57 ± 0.23
pα scat. (46)	Longitudinal asymmetry	-3.34±0.93
np capture	Polarization	1.8 ± 1.8
pol(n)p capture	Asymmetry	-(0.15±0.48)
pol(n)d capture	Asymmetry	42±38

PV coupling constants can be determined from data, e.g.

Asymmetry in pol(n)p capture

$$A_\gamma = a_\pi h_\pi^1 + a_\rho h_\rho^1 + a_\omega h_\omega^1$$

	a_{π}	$a_{ ho}$	a _w
Paris	-0.148	-0.001	0.003
Av18	-0.117	-0.001	0.002

Polarization in np capture

 $P_\gamma = p_{
ho 0}h_
ho^0 + p_{
ho 2}h_
ho^2 + p_{\omega 0}h_\omega^0$

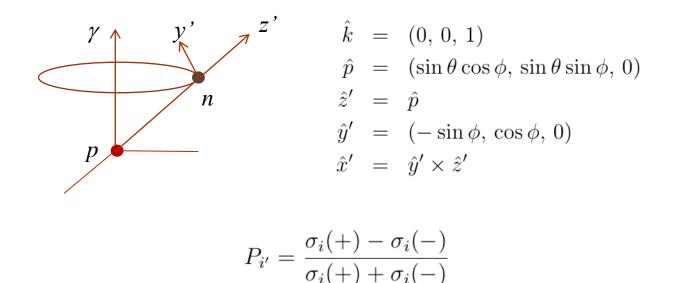
	Ppo	$p_{ ho2}$	$p_{\omega 0}$
Bonn	-0.0890	-0.0214	0.0088
Av18	-0.0088	-0.0175	0.0034

New experiments

- NPDGamma collaboration at SNS
- Anapole moments of exotic nuclei at RI facilities
- Parity violation group in High Intensity Gamma Source (HIGS) facility: dγ → np
- Others

What and How

• Polarization $P_{i'}$ in $d\gamma \rightarrow np$ (i=x, y, z)



 $\sigma_i(\pm)$: differential cross section with neutron spin parallel and anti-parallel along the axis i

• With parity-conserving interactions only

$$S^{-1} \sum_{spin}^{P} |A|^{2} = 4 \left[|X_{MS}|^{2} + |Y_{MV}|^{2} - (X_{MS}^{*}Y_{MV} + Y_{MV}^{*}X_{MS}) \right] + 2 \left[|X_{MV}|^{2} + |Y_{MS}|^{2} - (X_{MV}^{*}Y_{MS} + Y_{MS}^{*}X_{MV}) \right] + 3 \left[1 - (\hat{k} \cdot \hat{p})^{2} \right] \left[|X_{E}|^{2} + |Y_{E}|^{2} - (X_{E}^{*}Y_{E} + Y_{E}^{*}X_{E}) \right] \pm i\hat{n} \cdot (\hat{k} \times \hat{p}) \left[(X_{E}^{*}X_{MV} - X_{MV}^{*}X_{E}) + (Y_{E}^{*}Y_{MS} - Y_{MS}^{*}Y_{E}) - (Y_{E}^{*}X_{MV} - X_{MV}^{*}Y_{E}) - (Y_{MV}^{*}Y_{MS} - Y_{MS}^{*}Y_{MV}) \right].$$

• Including PV interactions

$$S^{-1} \sum_{spin}^{P} |A|^{2} = 4(|X_{MS}|^{2} + |Y_{MV}|^{2} - 2Y_{MV}ReX_{MS}) + 2(|X_{MV}|^{2} + |Y_{MS}|^{2} - 2Y_{MS}ReX_{MV}) + 3[1 - (\hat{k} \cdot \hat{p})^{2}](|X_{E}|^{2} + |Y_{E}|^{2} - 2X_{E}Y_{X}) \mp 2\hat{n} \cdot (\hat{k} \times \hat{p})(X_{E} - Y_{E})ImX_{MV} \mp 2(\hat{k} \cdot \hat{n})Imf(pv1) \mp 2(\hat{p} \cdot \hat{k})(\hat{k} \cdot \hat{n})Imf(pv2) \mp 2(\hat{p} \cdot \hat{n})Imf(pv3) \mp 2(\hat{p} \cdot \hat{k})(\hat{p} \cdot \hat{n})Imf(pv4).$$

Effective field theory

- Nuclear interactions at low energies on systematic ground
- Perturbative expansion with counting rules
- Many effective field theories with different counting rules

EFT for PV interactions with pions (pionful theory)

- Leading order: one-pion exchange
- Next-to-next leading order: two-pion exchange, four-nucleon contact

EFT for PV interactions without pions and with dibaryons (dEFT)

- Very low energy: scale even smaller than the pion mass
- Integrate out the pion and heavier degrees: all the interactions become contact type
- Dibaryon: an auxiliary field treating two-nucleon states in terms of a single field
- Advantage of dibaryon formalism: treat non-perturbative properties of the deuteron easily

PV interactions in the dEFT

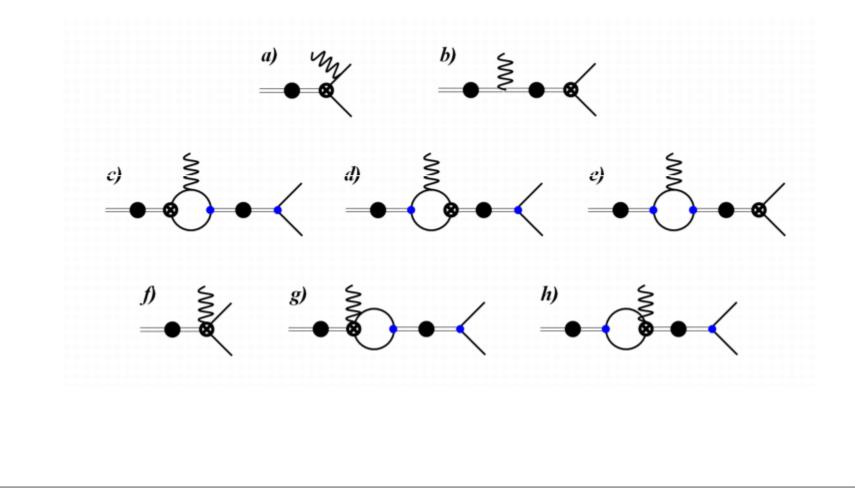
$$\mathcal{L}_{_{\mathrm{PV}}}^{0} = \frac{h_{_{\mathrm{dNN}}}^{0s}}{2\sqrt{2\rho_{d}r_{0}}m_{N}^{5/2}}s_{a}^{\dagger}N^{T}\sigma_{2}\sigma_{i}\tau_{2}\tau_{a}\frac{i}{2} \overleftrightarrow{\nabla}_{i}N$$
$$+\frac{h_{_{\mathrm{dNN}}}^{0t}}{2\sqrt{2\rho_{d}}m_{N}^{5/2}}t_{i}^{\dagger}N^{T}\sigma_{2}\tau_{2}\frac{i}{2}\overleftrightarrow{\nabla}_{i}N,$$
$$\mathcal{L}_{_{\mathrm{PV}}}^{1} = i\frac{h_{_{\mathrm{dNN}}}^{1}}{2\sqrt{2\rho_{d}}m_{N}^{5/2}}\epsilon_{ijk}t_{i}^{\dagger}N^{T}\sigma_{2}\sigma_{j}\tau_{2}\tau_{3}\frac{i}{2}\overleftrightarrow{\nabla}_{k}N$$

- h_{dNN}^{0s} : ${}^{1}S_{0}$ - ${}^{3}P_{0}$ mixing, $\Delta I = 0$ or 2, ρ , ω exchange
- h^{0t}_{dNN} : ${}^{3}S_{1}$ - ${}^{1}P_{1}$ mixing, $\Delta I = 0$ or 2, ρ , ω exchange
- h_{dNN}^1 : ${}^3S_1 {}^3P_1$ mixing, $\Delta I = 1, \pi, \rho, \omega$ exchange

Calculate PV observables and obtain them in terms of weak dNN coupling constants

Results

Leading order diagrams



Amplitude

$$iA^{PV} = i(h^{0t}A^{PV}_{0t} + h^{0s}A^{PV}_{0s} + h^{1}A^{PV}_{1})$$

$$iA_{0t}^{PV} = i\chi_{1}^{\dagger}\sigma_{2}\tau_{2}\chi_{2}^{T\dagger} \left[\vec{\epsilon}_{(d)} \cdot \vec{\epsilon}_{(\gamma)}\hat{p} \cdot \hat{k} Z_{MS}^{PVpg} + \vec{\epsilon}_{(d)} \cdot \hat{k}\vec{\epsilon}_{(\gamma)} \cdot \hat{p}(X_{pg}^{PV} - Z_{MS}^{PVpg}) - \vec{\epsilon}_{(d)} \cdot \hat{p}\vec{\epsilon}_{(\gamma)} \cdot \hat{p}Y_{pp}^{PV} \right] + i\chi_{1}^{\dagger}\sigma_{2}\tau_{3}\tau_{2}\chi_{2}^{T\dagger} \left[\vec{\epsilon}_{(d)} \cdot \vec{\epsilon}_{(\gamma)} Z_{E}^{PV0t} + \vec{\epsilon}_{(d)} \cdot \hat{k}\vec{\epsilon}_{(\gamma)} \cdot \hat{p}Y_{pg}^{PV} - \vec{\epsilon}_{(d)} \cdot \hat{p}\vec{\epsilon}_{(\gamma)} \cdot \hat{p}X_{pp}^{PV} \right] + \chi_{1}^{\dagger}\vec{\sigma}\sigma_{2}\tau_{2}\chi_{2}^{T\dagger} \cdot \left\{ (\hat{k} \times \vec{\epsilon}_{(\gamma)}) \left[\vec{\epsilon}_{(d)} \cdot \hat{p}\,\mu_{S}Y_{pg}^{PV} - \vec{\epsilon}_{(d)} \cdot \hat{k}(\mu_{S}X_{gg}^{PV} + \mu_{S}Z^{PVt}) \right] + \hat{k}\,\vec{\epsilon}_{(d)} \cdot (\hat{k} \times \vec{\epsilon}_{(\gamma)}) \mu_{S}Z^{PVtg} \right\} + \chi_{1}^{\dagger}\vec{\sigma}\sigma_{2}\tau_{3}\tau_{2}\chi_{2}^{T\dagger} \cdot (\hat{k} \times \vec{\epsilon}_{(\gamma)}) \left[\vec{\epsilon}_{(d)} \cdot \hat{p}\mu_{V}X_{pg}^{PV} - \vec{\epsilon}_{(d)} \cdot \hat{k}\mu_{V}Y_{gg}^{PV} \right],$$

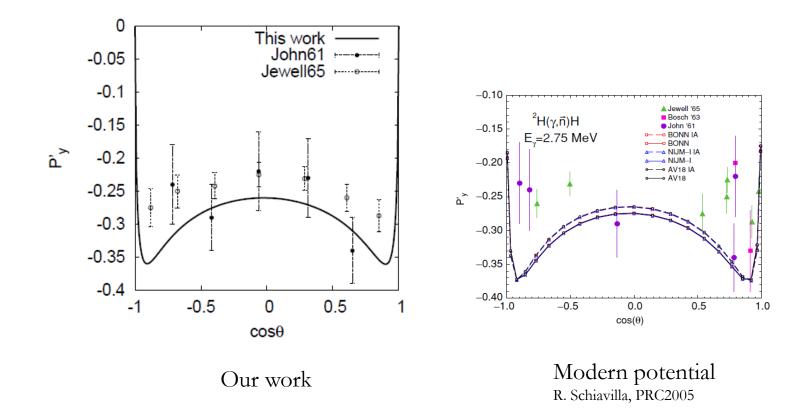
$$\tag{13}$$

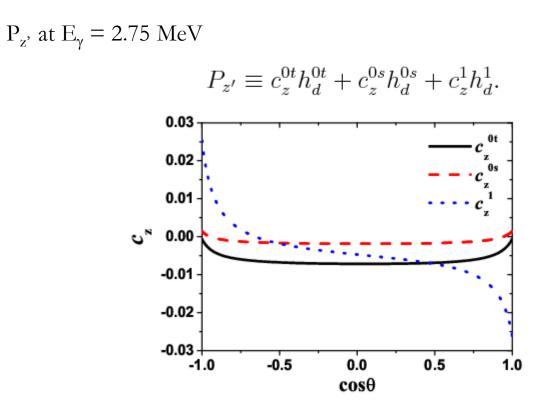
 $iA_{0s}^{PV} = i\chi_1^{\dagger}\sigma_2\tau_3\tau_2\chi_2^{T\dagger}\vec{\epsilon}_{(d)}\cdot\vec{\epsilon}_{(\gamma)}\left(Z_E^{PV0s} + \mu_V Z^{PVsg}\right) + \chi_1^{\dagger}\vec{\sigma}\sigma_2\tau_3\tau_2\chi_2^{T\dagger}\cdot\hat{p}\,\vec{\epsilon}_{(d)}\cdot(\hat{k}\times\vec{\epsilon}_{(\gamma)})Z_{MV}^{PVpg}\,,\tag{14}$

$$\begin{split} iA_{1}^{PV} &= i\chi_{1}^{\dagger}\sigma_{2}\tau_{2}\chi_{2}^{T^{\dagger}}\left[\vec{\epsilon}_{(d)}\cdot\vec{\epsilon}_{(\gamma)}\left(\mu_{V}Y_{gg}^{PV}-\hat{p}\cdot\hat{k}\,\mu_{V}X_{pg}^{PV}\right)+\vec{\epsilon}_{(d)}\cdot\hat{k}\vec{\epsilon}_{(\gamma)}\hat{p}\,\mu_{V}X_{pg}^{PV}\right]\\ &+ i\chi_{1}^{\dagger}\sigma_{2}\tau_{3}\tau_{2}\chi_{2}^{T^{\dagger}}\left[\vec{\epsilon}_{(d)}\cdot\vec{\epsilon}_{(\gamma)}\left(\mu_{S}X_{gg}^{PV}+\mu_{S}Z^{PVs}-\hat{p}\cdot\hat{k}\mu_{S}Y_{pg}^{PV}\right)+\vec{\epsilon}_{(d)}\cdot\hat{k}\vec{\epsilon}_{(\gamma)}\cdot\hat{p}\mu_{S}Y_{pg}^{PV}\right]\\ &+\chi_{1}^{\dagger}\vec{\sigma}\sigma_{2}\tau_{2}\chi_{2}^{T^{\dagger}}\cdot\left\{(\vec{\epsilon}_{(d)}\times\vec{\epsilon}_{(\gamma)})Z_{E}^{PV1}-(\hat{k}\times\vec{\epsilon}_{(\gamma)})\vec{\epsilon}_{(d)}\cdot\hat{k}\mu_{V}Z^{PVtg}+(\vec{\epsilon}_{(d)}\times\hat{p})\vec{\epsilon}_{(\gamma)}\cdot\hat{p}X_{pp}^{PV}\right.\\ &-(\vec{\epsilon}_{(d)}\times\hat{k})\vec{\epsilon}_{(\gamma)}\cdot\hat{p}Y_{pg}^{PV}+\hat{k}\left[\vec{\epsilon}_{(\gamma)}\cdot(\hat{k}\times\vec{\epsilon}_{(d)})\left(\mu_{V}X_{gg}^{PV}+\mu_{V}Z^{PVt}\right)-\vec{\epsilon}_{(\gamma)}\cdot(\hat{p}\times\vec{\epsilon}_{(d)})\mu_{V}Y_{pg}^{PV}\right]\\ &+\vec{\epsilon}_{(\gamma)}\hat{k}\cdot(\hat{p}\times\vec{\epsilon}_{(d)})\mu_{V}Y_{pg}^{PV}\right\}+\chi_{1}^{\dagger}\vec{\sigma}\sigma_{2}\tau_{3}\tau_{2}\chi_{2}^{T^{\dagger}}\cdot\left\{(\vec{\epsilon}_{(d)}\times\hat{p})\vec{\epsilon}_{(\gamma)}\cdot\hat{p}Y_{pp}^{PV}-(\vec{\epsilon}_{(d)}\times\hat{k})\vec{\epsilon}_{(\gamma)}\cdot\hat{p}X_{pg}^{PV}\right.\\ &+(\hat{p}\times\hat{k})\vec{\epsilon}_{(d)}\cdot\vec{\epsilon}_{(\gamma)}Z_{MS}^{PVpg}+(\vec{\epsilon}_{(\gamma)}\times\hat{p})\vec{\epsilon}_{(d)}\cdot\hat{k}Z_{MS}^{PVpg}+\hat{k}\left[\vec{\epsilon}_{(\gamma)}\cdot(\hat{k}\times\vec{\epsilon}_{(d)})Y_{gg}^{PV}\right], \end{split}$$

$$(15)$$

 $P_{v'}$ at $E_{\gamma} = 2.75$ MeV: check for a parity-conserving quantity





How large? Compare to the asymmetry in pol(n)p capture

dEFT:
$$A_{\gamma} = -\frac{h_{dNN}^1}{\sqrt{2\pi m_N \rho_d}} \frac{1 - \frac{2}{3}\gamma a_3}{(1 + \kappa_V)(1 - \gamma a_0) - \gamma^2 a_0 L_1}$$

= $-9.03 \times 10^{-4} h_{dNN}^1$.
 $A_{\gamma} = -(0.15 \pm 0.48) \times 10^{-7}$

$$P_{x'} \text{ at } E_{\gamma} = 2.75 \text{ MeV}$$

$$P_{x'} \equiv c_{x}^{0t} h_{d}^{0t} + c_{x}^{0s} h_{d}^{0s} + c_{x}^{1} h_{d}^{1}$$

$$0.012 \\ 0.008 \\ 0.004 \\$$

How large? Compare to the polarization in np capture dEFT: $P_{\gamma} = -\frac{1}{\sqrt{2\pi m_N \rho_d}} \frac{h_{dNN}^{0t} + \frac{5}{3}\gamma a_0 \left(h_{dNN}^{0s} + h_{dNN}^{0t}\right)}{(1 + \kappa_V)(1 - \gamma a_0) - \gamma^2 a_0 L_1}$ = $0.051 h_{dNN}^{0s} + 0.045 h_{dNN}^{0t}$.

 $P_{\gamma} = (1.8 \pm 1.8) \times 10^{-7}$

Summary

- Large P_z, non-negligible P_x,
- Counter calculations: DDH, other EFT's
- As many observables as possible: e.g. γ ³He \rightarrow p d