New Results From The T2K Neutrino Oscillation Experiment

Nagano Japan

Kofu

Hachioji

Kanagawa

Kawasaki 👝

Yokohama

Tokyo

Tokyo

Chiba

Chiba

Funabashi

370

E<u>1.39</u>° · laebashi

Kanazawa 👝 Kanazawa

Super-K

Saitama

Honshu

Fukushi

Niigata

N37

Sade

Mito

525

Nagano

for the T2K collaboration

Image NASA © 2007 Europa Technologies Image © 2007 TerraMetrics © 2007 ZENRIN Streaming University of British Columbia

shima

SSP 2012 Groningen

N35

Pointer 36° 23'41.59" N 139° 11'54.71" E elev 665 m

Tsu

Shizuoka

Nagoya

Neutrino Flavour Oscillation

Because a flavour eigenstate produced by a weak interaction is a mix of mass eigenstates which, if $m_1 \neq m_2$, propagate with different kinematics, oscillation can occur.

Scott Oser (UBC)

Three Flavour Neutrino Mixing

3x3 unitary matrix relating mass eigenstates to flavour eigenstates can be parametrized by four angles

$$\left(\begin{array}{ccccc} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{array}\right) \left(\begin{array}{ccccc} c_{13} & 0 & e^{i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta}s_{13} & 0 & c_{13} \end{array}\right) \left(\begin{array}{ccccc} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{array}\right)$$

Measured with atm and LBL v

Measured with reactor Measured with and LBL v

solar, reactor v

$$\theta_{23} \approx \pi/4$$
 $\theta_{13} \approx \pi/20$ $\theta_{12} \approx \pi/6$

Compare to identical parameterization of CKM matrix ...

 $\theta_{23} \approx \pi/76$ $\theta_{13} \approx \pi/870$ $\theta_{12} \approx \pi/14$

Scott Oser (UBC)

SSP 2012 Groningen lune 2012 3

Mass Hierarchy

Scott Oser (UBC)

$\boldsymbol{\theta}_{13}$ and $\boldsymbol{\nu}_{e}$ Appearance

The observed oscillations of atmospheric and long-baseline v's seem to be $v_{\mu} \rightarrow v_{\tau}$. What about $v_{\mu} \rightarrow v_{e}$?

For oscillations involving v_2 and v_3 (atmospheric, long baseline), the limiting factor for $v_{\mu} \rightarrow v_e$ is how much v_3 couples to electrons in CC weak interactions. To first order, in the absence of matter and CP effects, at oscillation maximum this probability is:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}2\theta_{13} \sin^{2}\theta_{23}$$
$$\approx 1/2 \sin^{2}2\theta_{13}$$

Observing this is the main goal of T2K.

Scott Oser (UBC)

CP Violation and v_{e} Appearance

- CP symmetry requires $P(v_{\mu} \rightarrow v_{e}) = P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$
- For v_{e} appearance at Δm_{32}^{2} :
 - $\frac{P(v_{\mu} \rightarrow v_{e}) P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})}{P(v_{\mu} \rightarrow v_{e}) + P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})} \approx \frac{\Delta m_{12}^{2} L \sin 2\theta_{12} \sin \delta_{CP}}{4E_{v} \sin \theta_{13}}$

modulo matter effect corrections (small at T2K)

Only δ_{CP} now unknown---this could be a big asymmetry!

Our universe is made of matter but not anti-matter. CP violation is a requirement for producing a cosmological asymmetry. *Regular quark CP violation not enough---is this the missing piece?*

Scott Oser (UBC)

Notable recent θ_{13} measurements

T2K (June 2011): $sin^{2}2\theta_{13} \approx 0.11 \pm 0.044$ (2.5σ excess, assuming δ_{CP} =0, normal hierarchy. PRL 107, 041801)

Sophisticated near detectors 280m from proton target

E133

E135°

E137°2

Nagano

Down: ECAL

noid Coil

P0D ECAL Barrel ECAL

Japan

E139°

ama

Kanazawa 👝 Kanazawa

Super-K

•

Naganos

Naebashi

.71" E elev 665 m

Kyoto

Nagoya

• Gifu

 \ge

XXX

Kanagav

Kawasal

Yokoł

2

Gifu

İmage NASA © 2007 Europa Technologies Image © 2007 TerraMetrics © 2007 ZENRIN

Streaming ||||||||| 100%

Eye alt 223.17 km

Awa shima

Sadoc

Honshu

Fukushima

Niigata

N37°

J-PARC

Niigata

T2K Neutrino Beam

30 GeV protons hit graphite target

3 magnetic horns focus π^+ , defocus π^- .

 μ monitor at far end of beam dump: fluence: 10⁸ μ /cm²/spill at 750 kW (projected eventual beam power)

T2K's 90cm graphite target

Scott Oser (UBC)

Off Axis Near Detector

Measure flux and spectrum before neutrinos oscillate. 12

Near detector interactions ND280 off-axis event gallery **T**2R POD TPC1 TPC2 TPC3 n FGD1 FGD2 ECAL sand muon + DIS candidate quasi-elastic candidate u π^+ р llalla single pion candidate DIS candidate

Super-Kamiokande

Large water Cherenkov detector

22.5ktonne water fiducial mass

 \sim 11,000 phototubes

Scott Oser (UBC)

T2K Event Selection at Super-K

- Super-K measures $CCQE \nu_{\mu} \text{ or } \nu_{e} \text{ events}$ for key T2K _____ measurements.
- Some challenges:
 - Understanding the irreducible background from beam v_e

electron-like (v.)

Backgrounds to v_e Appearance

1. Intrinsic beam v_e :

- reduce with E cut
- measure at ND

- 2. π^0 production, if one γ from $\pi^0 \rightarrow \gamma \gamma$ is not detected at Super-K:
 - better ID algorithms
 - measure at ND
 - measure π^0 in SK

MC π^0 event at Super-K

Scott Oser (UBC)

Analysis Strategy

- Predict event rates and distribution at Super-K as function of θ_{13} and δ_{CP} .
 - Beam Monte Carlo and neutrino interaction models provide baseline prediction
- Use near detector measurements to normalize flux ⊕ cross-section to data
 Select v_e events at Super-K
- Compare observed v_e distribution to prediction and fit for preferred θ_{13} .

Beam Flux Predictions

Flux uncertainty derived from experimental data on hadronic production. Pion and kaon production tuned to external data, especially NA61, which measured these on replica T2K target. Tuned GEANT3 simulation of production on graphite target used to predict fluxes at near and far detectors.

Major uncertainties are secondary nucleon production, hadronic interaction length, and pion production.

Beam flux uncertainty at SK is 11%, before adding near detector constraint.

Full correlation matrix between near and far detector fluxes is produced.18

Near Detector Spectrum Measurement

Select CC events in 1st FGD: muon-like dE/dx in TPC, negative curvature, start of track in FGD fid. volume, no upstream tracks

Divide into CCQE-like and nonQE-like sample: QE-like if no 2nd track in TPC & no Michel electron in FGD.

Measure the muon track's momentum and angle, and use the p,θ distribution for both QE-like and nonQE-like events to constrain flux and cross-section

Near Detector Distributions

QE sample constrains spectral shape, flux, and crosssection:

$$E_{\nu}^{\text{rec}} = \frac{(M_n - V_{nuc}) \cdot E_e - m_e^2/2 + M_n \cdot V_{nuc} - V_{nuc}^2/2 + (M_p^2 - M_n^2)/2}{M_n - V_{nuc} - E_e + P_e \cos \theta_{\text{beam}}}$$

NonQE-like sample fixes backgrounds, cross-section inputs

Near Detector Systematics

Statistics-limited analysis. Major detector systematics: * non-uniform B field * secondary interactions * background from interactions outside of FGD

Full 40x40 detector covariance matrix produced for all systematic uncertainties.

Joint fit of beam and near detector data for fluxes and cross-sections

Beam inputs: binned energy spectra for all flux components; covariances between ND280 and SK fluxes

v interaction model: parametrized cross-sections for

 + all relevant modes;
 Error estimates from fits to external data.
 NEUT + reweighting Predicted # of events in ND bins as a Function of flux and cross-section parameters

Maximum likelihood fit to ND data to determine flux and cross-section reweightings. Beam model prediction and external cross-section measurements serve as priors in fit.

Result: updated flux, cross-section values and uncertainties at SK

Near detector data: Number of events in 20 p_{μ} , θ_{μ} bins for QE-like and nonQE-like samples, + full error matrix.

Reduction in uncertainty from ND fit

Near detector data constrains combination of flux x cross-sections.

Flux at ND is highly correlated with flux at SK, since v's are produced by the same decaying particles in the beam.

Event totals	QE-like	nonQE-like
ND Data	2352	2132
Predicted, pre-fit	2694±275(flux)±469(xsec)	2348±235(flux)±238(xsec)
Predicted, post-fit	2363±79 (flux + xsec)	2130±107 (flux + xsec)

Neutrino Interaction Model

Our primary neutrino interaction model is NEUT, with GENIE used as a cross-check.

Previous data from Mini-BooNE, K2K, and other experiments used to constrain parametrized cross-section model.

Parameter	Prior Value	Prior Error	Fitted Value	Fitted Error
M_A^{QE} (GeV)	1.21	0.45	1.186	0.194
M_A^{RES} (GeV)	1.16	0.11	1.137	0.095
CCQE E1	1.0	0.11	0.941	0.087
CCQE E2	1.0	0.30	0.917	0.230
CCQE E3	1.0	0.30	1.182	0.252
$CC1\pi$ E1	1.63	0.43	1.665	0.283
$CC1\pi$ E2	1.0	0.40	1.101	0.297
$NC1\pi^0$ Norm.	1.19	0.43	1.222	0.396
Spec. Function	0 (off)	1 (on)	0.038	0.205
$p_F~({ m MeV/c})$	217	30	224.6	23.5
CC Other Shape (GeV)	0.0	0.4	-0.048	0.352

CCQE model is based on relativistic Fermi gas model of nucleus, with empirical normalization factors to span uncertainties in data. Comparison to spectral function model included as uncertainty. 24

Super-K Detector Systematics

Detector efficiency systematics are determined primarily from atmospheric neutrino data.

 π^{0} mis-ID studied with hybrid electron + MC γ sample

Systematic uncertainties evaluated as function of electron direction & momentum

Event	Systematic error		
	$\sin^2 2\theta_{13} = 0.1$	$\sin^2 2\theta_{13} = 0$	
Signal	2.6%	2.6%	
Background	9.4%	9.0%	
Sig+BKG	3.3%	8.5%	

T2K Data Set (until 2012 May 15)

	Run 1	Run 2	Run 3b	Run 3c
Protons on Target (x10 ²⁰)	0.323	1.108	0.214	0.911

Peak beam power: 190kW

Total POT used in analysis: 2.56×10^{20}

Near detector constraint from just Run 1+2 only

T2K event selection cuts at SK

Selection cuts optimized on MC and fixed before datataking.

- 1. Event is fully contained in SK fiducial volume (22.5ktonne)
- 2. Number of rings found = 1
- 3. Ring has electron-like particle ID
- 4. Visible energy > 100 MeV
- 5. No decay electrons
- 6. π^0 cut: fit for best 2nd ring that can be found, and demand that invariant mass of two rings is < 105 MeV/c²
- 7. Reconstructed neutrino energy (assuming CCQE kinematics) is <1250 MeV.

Oscillation Fit

We fit the p_{a}, θ_{a} distribution to templates for signal and background to determine θ_{13} , using a maximum likelihood fit.

Signal and background have different distributions in these variables.

Best-fit: $\sin^2 2\theta_{13} = 0.104$ (for normal hierarchy, $\delta_{CP}=0)$

Oscillation parameter limits

Best-fit values for both normal and inverted mass hierarchy are very close to values inferred from reactor neutrino data.

v_{μ} disappearance result: Runs 1+2

Number of events

With only 1/50th of its final data set T2K is already competitive on atmospheric neutrino mixing parameters. Significant improvements in θ_{23} , tests of maximal mixing expected.

PHYSICAL REVIEW D 85, 031103(R) (2012) arXiv:1201.1386 31

Conclusions

T2K has nearly doubled its data set since the March 2011 earthquake, and has significantly upgraded the analysis.

New analysis uses full near detector spectrum measurement, improved beam systematics, reduced Super-K systematics, and momentum/angular distributions at Super-K.

Latest data from T2K excludes θ_{13} =0 at 3.2 σ .

Results are consistent with past T2K and recent reactor neutrino results, and open the door to CP studies using long-baseline neutrino beams.

Backup slides

Scott Oser (UBC)

Matter Effects and v_e Appearance

Matter effects modify the oscillation formula. Because the Earth is made of electrons and not heavier leptons, the effective "index of refraction" for v_e is different than that for v_{μ} . At the oscillation maximum, the v_e appearance probability changes to:

$$P(v_{\mu} \rightarrow v_{e}) \approx \left(1 + 2\frac{E}{E_{R}}\right) P_{vac}(v_{\mu} \rightarrow v_{e})$$

where
$$E_{R} = \frac{\Delta m_{32}^{2}}{2\sqrt{2}G_{F}N_{e}} = \pm 11GeV$$

The sign of the matter effect is opposite for neutrinos and antineutrinos, and depends on the sign of Δm^2 as well.

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{c_{ij} = \cos\theta_{ij}} s_{ij} = \sin\theta_{ij} \\ P(\nu_{\mu} \rightarrow \nu_{e}) = \frac{4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31}}{+8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21}} \\ -8C_{13}^{2}C_{12}^{2}C_{23}^{2}S_{12}S_{13}S_{23}(G_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21}} \\ +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta) \cdot \sin^{2}\Delta_{21}} \\ -8C_{13}^{2}S_{12}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31}} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{a}{\Delta m_{13}^{2}}(1 - 2S_{13}) \sin^{2}\Delta_{31} \\ P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^{2}2\theta_{23}\sin^{2}\left(1.27\Delta m_{23}^{2}\frac{L}{E}\right) \\ \circ \quad Rich Physics in \nu_{e} appearance \\ [\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP}, \Delta m_{21}^{2}, \Delta m_{31}^{2}, \Delta m_{32}^{2}] \\ \circ \quad CP \ violation \\ M \ w = 0 \ f_{0} \ f_{0$$

-0.06

2

1

 E_v (GeV)

- Matter effect
- (Sterile neutrinos) or new physics₄

θ_{13} : MINOS

MINOS $v_{\mu} \rightarrow v_{e}$: saw 35 events, expected background 27 ± 5 ± 2 $\sin^{2} 2 \Theta_{13} = 0.078^{+0.079}_{-0.064}$

PRL 107, 101802 (2011)

Scott Oser (UBC)

Atmospheric Neutrinos

Scott Oser (UBC)

PRL 93:101801, 2004 PRD 71:112005, 2005

Super-K atmospheric v results

Deficit of upward-going v_{μ} relative to downward-going.

No deficit for v_e .

Seems like $v_{\mu} \rightarrow v_{\tau}$

SSP 2012 Groningen June 2012 38

Scott Oser (UBC)

Number of Events

Leptogenesis

CP violation in quark sector not enough to explain observed matter-antimatter asymmetry in universe.

Neutrino mixing provides another possible source of CPV.

• Standard Leptogenesis: decays of RH neutrinos (CPV in decay)

Quantum interference of tree diagram and one-loop diagram

Usual scenario: decay of heavy Majorana neutrinos Phys.Lett B 174, 45 (1986) Many alternates, eg. leptogenesis with only Dirac v's PRL 89:271601 (2002)

Relation of δ_{CP} to leptogenesis is model-dependent, but observation of leptonic CP violation is an important milestone.

CP Violation and Matter Effects

Significant parameter degeneracies will require multiple experiments to disentangle.

Scott Oser (UBC)

Beam Flux Uncertainties

$$\sin^2(2\theta_{13})=0.1$$
 $\Delta m_{32}^2=2.4\times 10^{-3} \text{ eV}^2$
 $\sin^2(2\theta_{23})=1.0$

	% Errors on Sample Predictions			
	N _{ND}	Ν _{sκ}	N _{sk} /N _{nd}	
Pion Production	3.41	4.97	1.88	
Kaon Production	3.48	1.17	2.99	
Secondary Nucleon Production	5.46	6.61	1.34	
Hadronic Interaction Length	5.78	6.56	1.90	
Proton Beam, Alignment & Off-axis Angle	3.45	2.08	1.75	
Horn Current and Magnetic Field	1.40	1.16	1.39	
Total	10.04	10.94	4.78	

Beam direction: INGRID

Neutrino Beamline

Scott Oser (UBC)

T2K: Flux prediction (Beam MC)

target using

Particle

others.

SK ND π^+ Get flux predictions at near Model pion and kaon Simulate hadron detector and SK propagation and decay production on through horns and **FLUKA** simulation beamline Flux[/10²¹ POT/50 MeV Flux[/10²¹ POT/50 MeV/cm² SK MC v., at SK v₁₁ at ND28 production cross ND MC \overline{v}_{μ} at SK v.. at ND280 v_a at SK v_e at ND280 sections tuned to $\overline{\mathbf{v}}_{a}$ at SK \overline{v}_{a} at ND280 external data from NA61 and 10

E_v (GeV)

ТТ

E_v (GeV)

Flux uncertainties for $\nu_{_{\!\!\!\!\mu}}$ and $\nu_{_{\!\!\!e}}$

Scott Oser (UBC)

Parent particles of beam v_e background

Scott Oser (UBC)

Off-Axis Beam Principle

Off-axis beam: more flux near peak oscillation energy, less flux at higher energies where v_e backgrounds are produced.

Scott Oser (UBC)

Near Detector Run 3 vs. Run 1+2 comparison

Check	Sample	P-value
Rate Consistency	Run3 versus Run1+2	0.989
Shape Consistency	Run3 versus Run1+2	0.561

ND280 selection cut distributions

TPC dE/dX particle ID

Number of TPC-FGD tracks

Near Detector angular distributions

QE-like

nonQE-like

Technically plot is Run2 only, since Run 1+2 wasn't available

ND280 detector systematics

Systematics	Sample	Error (%)
Track quality	Beam data/MC	0.1
TPC single track eff.	Beam data/MC	0.5
TPC double track eff.	Beam data/MC	0.6
TPC particle ID (PID)	Beam data/MC	0.1
TPC momentum scale	External measurements	0.5
TPC mom. distortion	Special MC	~1-7
TPC mom. resolution	Beam data/MC	2.0
TPC-FGD match. eff.	Sand interact. + cosmics	<1
Fiducial mass	External measurements	0.7
Charge mis-ID	Beam data/MC	<0.3
Michel electron eff.	Cosmics	0.5
Cosmic rays	Special MC	0.1
Sand interactions	Special MC	1.5
Out-of-fiducial volume	Several samples	~1-9

CCQE selection efficiency in ND

Scott Oser (UBC)

ND selection table

Cut	Data Run1	MC Run1	Data Run2	MC Run2		
CC Inclusive Selection						
Good negative track in FV	2479	2347.9	6358	6148.8		
Upstream TPC veto	1741	1800.7	4502	4749.6		
PID cut	1202	1266.2	3283	3440.6		
CCQE Sub-Sample Selection						
TPC-FGD track = 1	664	727.4	1853	1989.9		
No Michel electron	619	676.0	1735	1858.8		

Scott Oser (UBC)

Comparison of ND280 data to MC after tuning with fit results

Scott Oser (UBC)

NEUT bare (nucleon level) inclusive CC cross-section vs. energy

$CC1\pi q^2$ distribution for best fit

Scott Oser (UBC)

Nuclear Effects

Data from K2K Scibar detector shows poor agreement in q² distribution for events selected as being not CCQE The neutrino world's version of a QCD background ... are there ain't no such thing as asymptotic freedom at these energies!

Nuclear effects quite important in modelling neutrino interactions: binding energy, Fermi motion, Pauli blocking, coherent scattering off of entire nucleus ...

Data anomalies abound!

May be different for different nuclei.

T2K general likelihood fit

 $\ln[L(\vec{b}, \vec{x}, \vec{o} | \vec{M}_{ND280}, \vec{M}_{SK})] = \ln[P(\vec{M}_{ND280} | \vec{b}, \vec{x})] + \ln[P(\vec{M}_{SK} | \vec{b}, \vec{x}, \vec{o})] + \ln[\pi(\vec{b})] + \ln[\pi(\vec{x})]$

$$\pi(\vec{b}) = (2\pi)^{-k/2} |V_b|^{-1/2} e^{-\frac{1}{2}\Delta b(V_b^{-1})\Delta b^T}$$

$$\begin{aligned} \ln[L(\vec{b}, \vec{x}, \vec{o} | \vec{M}_{ND280}, \vec{M}_{SK})] &= \ln[P(\vec{M}_{ND280} | \vec{b}, \vec{x})] + \ln[P(\vec{M}_{SK} | \vec{b}, \vec{x}, \vec{o})] \\ &- \frac{1}{2} \Delta b(V_b^{-1}) \Delta b^T - \frac{1}{2} \Delta x(V_x^{-1}) \Delta x^T \end{aligned}$$

T2K beam+ND likelihood fit

$$\ln[L(\vec{b}, \vec{x} | \vec{M}_{ND280})] = \ln[P(\vec{M}_{ND280} | \vec{b}, \vec{x})] - \frac{1}{2} \Delta b(V_b^{-1}) \Delta b^T - \frac{1}{2} \Delta x(V_x^{-1}) \Delta x^T$$

$$\begin{split} \Delta\chi^2_{ND280} =& 2\sum_{i}^{Nbins} N_i^p(\vec{b}, \vec{x}, \vec{d}) - N_i^d + N_i^d ln [N_i^d / N_i^p(\vec{b}, \vec{x}, \vec{d})] + \\ & \sum_{i}^{E_{\nu}bins} \sum_{j}^{E_{\nu}bins} \Delta b_i (V_b^{-1})_{i,j} \Delta b_j + \sum_{i}^{Xsecpars} \sum_{j}^{Xsecpars} \Delta x_i (V_x^{-1})_{i,j} \Delta x_j + \\ & \sum_{i}^{Nbins} \sum_{j}^{Nbins} \Delta d_i (V_d(\vec{b}, \vec{x})^{-1})_{i,j} \Delta d_j + ln (\frac{|V_d(\vec{b}, \vec{x})|}{|V_d^{nom}|}) \end{split}$$

Beam+ND fit results

ND280 background measurements

In-situ measurements of electron neutrino component of beam and π^0 production rate in ND280.

Used as cross-checks at present.

p_e, θ_e PDFs for signal and backgrounds in oscillation fit

Event timing for fully contained events at Super-K

Event distributions at Super-K

All fiducial volume events with E>30MeV

 v_e candidate events

Results from fit to reconstructed E_v

Reconstructed E_{ν} spectrum

Ultimate Sensitivity

Ultimately we aim for 750kW x 5x10⁷ s, which should push down to $sin^2 2\theta_{13} = .006 (90\% CL)$

This would be 5 years of running at full power.

Intermediate target is $\sin^2 2\theta_{13} = 0.013$

The T2K Collaboration

\sim 500 members, 59 Institutes, 12 countries

TRIUMF

U. Alberta U. B. Columbia U. Regina

U. Toronto

U. Victoria U. Winnipeg York U.

CEA Saclay IPN Lyon LLR E. Poly. **LPNHE** Paris

INFN, U. Roma INFN, U. Napoli INFN, U. Padova INFN, U. Bari

ICRR Kamioka **ICRR RCCN** KEK Kobe U. Kyoto U. Miyagi U. Edu. Osaka City U. U. Tokyo

NCBJ, Warsaw **IFJ PAN. Cracow** T. U. Warsaw U. Silesia, Katowice U. Warsaw U. Wroklaw

Russia

INR

S. Korea

N. U. Chonnam U. Dongshin N. U. Seoul

IFIC, Valencia U. A. Barcelona

STFC/RAL STFC/Daresbury

Switzerland

U. Bern U. Geneva ETH Zurich

Lancaster U

Liverpool U.

Oxford U.

Sheffield U.

Warwick U.

-

Boston U. Colorado S. U. Duke U. Louisiana S U Stony Brook U. Imperial C. LondonU. C. Irvine Queen Mary U. L. U. Colorado U. Pittsburgh

U. Rochester

U. Washington

U. Aachen