

ERC Advanced Grant PI: Prof. Dr. Eberhard Widmann

THE HYPERFINE STRUCTURE OF ANTIHYDROGEN

E. Widmann

Stefan Meyer Institute for Subatomic Physics Austrian Academy of Sciences, Vienna

> SSP 2012 GRONINGEN NL 21.6.2012

Donnerstag, 21. Juni 12

MATTER-ANTIMATTER SYMMETRY

- Cosmological scale:
 - asymmetry

- CPT violation
 - Microscopic: symmetry?

Donnerstag, 21. Juni 12

00⁰⁰00

FUNDAMENTAL SYMMETRIES C,P,T

- C: charge conjugation particle ↔ antiparticle
- P: parity: spatial mirror
- T: time reversal
- CPT theorem: consequence of
 - Lorentz-invariance
 - local interactions
 - unitarity
 - Lüders, Pauli, Bell, Jost 1955
- all QFT of SM obey CPT
- not necessarily true for string theory

CTP → particle/anitparticle: same masses, lifetimes, g-factors, |charge|,.

VIOLATIONS OF FUNDAMENTAL SYMMETRIES

- Historically it was believed that nature would conserve symmetries of space
- Observed symmetry violations in weak interaction:

		Size of effect
Parity violation	1956 Theory: Lee & Yang 1957 ß-decay Wu et al. π -> μ -> e decay	100%
CP violation	1964 K ₀ decays: Cronin & Fitch 2001 B decays: BELLE, BaBar	ε ~2.3 x 10 ⁻³

Donnerstag, 21. Juni 12

0 00, 000

HYDROGEN AND ANTIHYDROGEN

Donnerstag, 21. Juni 12

CPT TESTS - RELATIVE & ABSOLUTE PRECISION

 Atomic physics experiments, especially antihydrogen offer the most sensitive experimental verifications of CPT

Donnerstag, 21. Juni 12

0 0° 00

HFS AND STANDARD MODEL EXTENSION

 $(i\gamma^{\mu}D_{\mu} - m_{e} - a^{e}_{\mu}\gamma^{\mu} - b^{e}_{\mu}\gamma_{5}\gamma^{\mu}$ Lorentz $\frac{1}{2}H^{e}_{\mu\nu}\sigma^{\mu\nu} + ic^{e}_{\mu\nu}\gamma^{\mu}D^{\nu} + id^{e}_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0.$

CPT & Lorentz violation Lorentz violation $\psi = 0$.

D. Colladay and V.A. Kostelecky, PRD 55 (1997) 6760.

Donnerstag, 21. Juni 12

GROUND-STATE HYPERFINE SPLITTING OF H^(BAR)

- spin-spin interaction positron - antiproton
- Leading: Fermi contact term

$$\nu_F = \frac{16}{3} \left(\frac{M_p}{M_p + m_e}\right)^3 \frac{m_e}{M_p} \frac{\mu_p}{\mu_N} \alpha^2 c Ry,$$

magnetic moment of p^{bar}

- only known to 0.3%, proposals to measure in Penning trap Gabrielse, Ulmer
- H: deviation from Fermi contact term: ~ 32 ppm
 - finite electric & magnetic radius (Zemach corrections): 41 ppm
 - polarizability of p^(bar): < 4 ppm
 - few ppm theoretical uncertainty remain

$$\Delta\nu(\text{Zemach}) = \nu_{\text{F}} \frac{2Z\alpha m_{\text{e}}}{\pi^2} \int \frac{d^3p}{p^4} \left[\frac{G_E(p^2)G_M(p^2)}{1+\kappa} - 1 \right]$$

Donnerstag, 21. Juni 12

0

ASACUSA COLLABORATION @ CERN-AD

ASAKUSA KANNON TEMPLE BY UTAGAWA HIROSHIGE (1797–1858)

Atomic Spectroscopy And Collisions Using Slow Antiprotons

SPOKESPERSON: R.S. HAYANO, UNIVERSITY OF TOKYO

- University of Tokyo, Japan
 - Institute of Physics
- Faculty of Science, Department of Physics
- RIKEN, Saitama, Japan
- SMI, Austria
- Aarhus University, Denmark
- Max-Planck-Institut für Quantenoptik, Munich, Germany
- KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
- ATOMKI Debrecen, Hungary
- Brescia University & INFN, Italy
- University of Wales, Swansea, UK
- The Queen's University of Belfast, Ireland

F. Widmann

ANTIPROTON DECELERATOR @ CERN

- •All-in-one machine:
 - Antiproton capture
 - deceleration & cooling
 - 100 MeV/c (5.3 MeV)
- Pulsed extraction
 - 2-4 x 10⁷ antiprotons per pulse of 100 ns length
 - I pulse / 85-120

·HFS

E.Widmann

HFS MEASUREMENT IN AN ATOMIC BEAM

- atoms evaporate no trapping needed
- cusp trap provides polarized beam
- spin-flip by microwave
- spin analysis by sextupole magnet
- low-background high-efficiency detection of antihydrogen

E.W. et al. ASACUSA proposal addendum CERN-SPSC 2005-002

achievable resolution

- better 10^{-6} for T ≤ 100 K
- > 100 H^{bar}/s in 1S state into 4π needed
- event rate I / minute: background from cosmics, annihilations uptsreams

00

000

POLARIZED H^{BAR} BEAM FROM "CUSP" TRAP

- First antihydrogen production in 2010
 - expectation: polarized beam

Donnerstag, 21. Juni 12

000000

00 00

13

HBAR FORMATION IN CUSP TRAP

Donnerstag, 21. Juni 12

Donnerstag, 21. Juni 12

SPIN-FLIP RESONATOR

- f = 1.420 GHz, Δf = few MHz, ~ mW power
- challenge: homogeneity over $10 \times 10 \times 10 \times 10^{3}$ ($\lambda = 21 \text{ cm}$
- solution: strip line

RF cavity

RF field pattern

T. Kroyer., CERN-AB-Note-2008-016 (2008)

Donnerstag, 21. Juni 12

000

CONSTANT B-FIELD

Donnerstag, 21. Juni 12

SEXTUPOLE & SPIN-FLIP RESONATOR

Donnerstag, 21. Juni 12

0000

0

SEGMENTED TRACKING DETECTOR

being prepared

Donnerstag, 21. Juni 12

(POLARIZED) MONOATOMIC H BEAM

- test of apparatus during CERN shutdown 2013
- Ist phase: monoatomic beam (done at SMI)

- RF discharge tube
- detection by Q-mass

M. Diermaier Dipl. U.Wien 2012

Donnerstag, 21. Juni 12

POLARIZED MONOATOMIC H BEAM

• 2 permanent sextupoles, B_{max}=1 T, L=7 cm, d=1 cm

iris to block high-field seekers

Donnerstag, 21. Juni 12

EXPERIMENTS IN AN ATOMIC BEAM

• Phase I (ongoing): Rabi method

Donnerstag, 21. Juni 12

00000

(FAR) FUTURE EXPERIMENTS

- Phase 3: trapped H^{bar}
 - Hyperfine spectroscopy in an atomic fountain of antihydrogen
 - needs trapping and laser cooling outside of formation magnet
 - slow beam & capture in measurement trap
 - Ramsey method with d=1m
 - $\Delta f \sim 3 \text{ Hz}, \Delta f/f \sim 2 \times 10^{-9}$

M. Kasevich, E. Riis, S. Chu, R. DeVoe, PRL 63, 612–615 (1989)

Donnerstag, 21. Juni 12

0 0° 00

AEGIS - ULTRA-LOW ENERGY BEAM

- H^{bar} production at 100 mK
- primary physics goal: gravity
- opportunities for HFS measurement
 - achieve higher precision with ultra-slow beam
 - transfer H^{bar} to freely accessible trap

Donnerstag, 21. Juni 12

00⁰⁰000

SUMMARY

- Precise measurement of the hyperfine structure of antihydrogen promises one of the most sensitive tests of CPT symmetry
- Complementary to IS-2S laser spectroscopy, competitive in absolute sensitivity
- Recent milestones in H^{bar} production & trapping make the field enter the era of spectroscopy
- Time scale of precision experiments is 5-10 years

ERC Advanced Grant 291242 **HbarHFS** www.antimatter.at PI EW

Donnerstag, 21. Juni 12