

Hypernuclear halos with HYDRA at R3B

Alexandre Obertelli, TU Darmstadt

THEIA seminar

March 16, 2022

Isospin and strangeness degree of freedom

- Proton-neutron asymmetry: nuclear structure and in-medium forces
- Hypernuclei open the strangeness sector
- With HYDRA, we aim at weekly-bound single- Λ hypernuclei at R3B (FAIR)

Non-strange halo nuclei

- First observation of neutron halos in Berkeley and interpretation from ISOLDE I. Tanihata et al., PRL 55 (1985), P.G. Hansen and B. Jonson, EPL 4 (1987)
- Quantum tunnelling: low binding energy and low angular momentum (I=0,1)
- Proton halos investigated (ex. ¹⁷Ne) W. Geithner et al., PRL 101 (2008), C. Lehr et al., PLB 827 (2022)
- Medium mass halos (p-wave) suggested for the ³¹Ne and ³⁷Mg T. Nakamura et al., PRL 112 (2014), N. Kobayashi et al., PRL 112 (2014)

Hypernuclear halos

- Universality of halos: several loosely bound hypernuclei are candidates
- Λd rms distance in hypertriton ($^{3}_{\Lambda}$ H) predicted at 10.8 fm
 - F. Hildenbrand, H.-W. Hammer, PRC 100 (2019)
- $^{/}_{\Lambda}$ Be predicted as a two-proton halo

The hypertriton puzzle in a nutshell

- Low binding energy (average 2020: 130(50) keV, STAR 2020: 410(120) keV)
- Large spatial extension predicted (unmeasured)
- Inconsistency between several lifetime analyses (STAR, HyPHI0, ALICE) Latest ALICE value: 254 ± 15 (*stat.*) ± 17 (*sys.*) ps

$^{3}_{\Lambda}$ H:cluster formation in relativistic HI collisions

- Statistical hadronization or coalescence?
- ³_AH has the potential to rule out coalescence models for cluster (nuclei) production in HI collisions
 F. Bellini et al., PRC 103 (2021), ALICE-PUBLIC-2020-005
 Size of ³_AH is central for coalescence predictions

R.B. Wiringa and S.C. Pieper, PRL 89 (2004) A. Cipollone, C. Ba

A. Cipollone, C. Barbieri, P. Navratil, PRL 111 (2013)

Ab initio description of light (hyper)nuclei

YN and YNN forces

- Direct Λp scattering : 27 data points only
- Femtoscopy and pp collisions : new laboratory for YN and YY interactions
- Hypernuclei data necessary to pin-down in-medium and many-body forces

Multi-GeV/n ions : opportunities at FAIR

Heavy-ion collisions at FAIR energies competitive to produce hypernuclei (HyPHI0)
Strangeness production threshold requires > 1.6 GeV/nucleon

Production of hypernuclei from HI collisions at few GeV / nucleon

• Strangeness production in heavy-ion collisions:

 $p + p \rightarrow p + \Lambda + K^{+} \quad (E_{lab} > 1.58 \, GeV)$ $\pi^{+} + n \rightarrow \Lambda + K^{+} \quad (E_{lab} > 0.76 \, GeV)$

A. S. Botvina et al., PLB 742 (2015)

TECHNISCHE UNIVERSITÄT

DARMSTADT

Hypernuclei production from HI collisions

- Evolution of hadrons in space-time from transport
- Adsorption of Λ (coalescence or potential)
- De-excitation
- Production saturation from 5-10 A GeV

Production cross sections

Expt with ¹²*C target*, DUBNA: S. Avramenko et al., NPA 547 (1992), HyPHI: C. Rappold et al., NPA 913 (2013)

Beam	Energy (GeV/nucleon)		$^{3}_{\Lambda}{ m H}$	$^4_{\Lambda}{ m H}$
_		(I) (II)	0.63	$\sigma(ub)$
³ He	5.14	(II)	< 0.05	$o(\mu D)$
		Dubna [16]	$0.05^{+0.05}_{-0.02}$	
⁴ He	3.7	(I)	< 0.01	0.19
		(II)	0.24	0.12
		(III)	0.04	< 0.01
		Dubna [16]	< 0.1	$0.4^{+0.4}_{-0.2}$
		(I)	1.15	0.27
6T;	37	(II)	0.29	2.31
	5.7	(III)	0.84	0.33
		Dubna [16]	$0.2^{+0.3}_{-0.15}$	$0.3^{+0.3}_{-0.15}$
		(I)	0.94	0.35
71;	3.0	(II)	0.17	2.44
LI	5.0	(III)	0.88	0.64
		Dubna [16]		
	2.0	(I)	0.2	0.02
61;		(II)	0.03	0.43
LI			0.13	0.04
		HypHI [45]	3.9±1.4	3.1±1.0

Model predictions: A. S. Botvina *et al.*, PRC 95 (2017); Y. Sun, A. S. Botvina et al., PRC 98 (2018); See also recent reference: A. S. Botvina *et al.*, PRC 103 (2021)

Production cross sections

Expt with ¹²*C target*, DUBNA: S. Avramenko et al., NPA 547 (1992), HyPHI: C. Rappold et al., NPA 913 (2013)

Beam	Energy (GeV/nucleon)		$^{3}_{\Lambda}H$	⁴ ∧H	
	(Gev/nucleon)	Ф	0.63		n + AC @ 2 GeV/nucleon
³ He	5.14	(I) (II)	0.05	$\sigma(\mu b)$	
		(II)	< 0.05		$[\leftrightarrow \Lambda^n]$
		Dubna [16]	0.05+0.05		$ - \frac{3}{\Lambda} H $
		Dublia [10]	0.05_0.02	0.10	- ⁴ H
⁴ He	3.7	(1)	< 0.01	0.19	
		(11)	0.24	0.12	
		(III)	0.04	< 0.01	$- \frac{1}{\Lambda}Be$
		Dubna [<u>16</u>]	< 0.1	$0.4^{+0.4}_{-0.2}$	
⁶ Li	3.7	(I)	1.15	0.27	3
		(II)	0.29	2.31	
		(III)	0.84	0.33	
		Dubna [16]	$0.2^{+0.3}_{-0.15}$	$0.3^{+0.3}_{-0.15}$	
⁷ Li	3.0	(I)	0.94	0.35	
		(II)	0.17	2.44	
		(III)	0.88	0.64	10 ⁻² ⊨ ≤
		Dubna [16]			
⁶ Li	2.0	(I)	0.2	0.02	8 9 10 11 12 13 14 15 16 17
		(II)	0.03	0.43	mass number A
		(III)	0.13	0.04	
		HypHI [45]	3.9±1.4	3.1±1.0	

Model predictions: A. S. Botvina *et al.*, PRC 95 (2017); Y. Sun, A. S. Botvina et al., PRC 98 (2018); See also recent reference: A. S. Botvina *et al.*, PRC 103 (2021)

The R3B experiment

- R3B is a complete setup dedicated to kinematically complete measurements
- Not suited for all high-resolution invariant mass (ex. pion decay from hypernuclei)
- With HYDRA, we propose a new detection system for R3B: a TPC inside the GLAD dipole
 Tracking inside B field gives access to full momentum
 - TPC: (1) minimum material budget, (2) large active volume with minimal cost

HYDRA at R3B

- Concept: high-resolution invariant-mass with high efficiency
 - off-beam 1-meter long TPC inside GLAD magnet (2 T)
 - selective trigger
 - Iarge detection efficiency for pionic decays (55 %)
 - minimum straggling, high position resolution (<200 μ m)
 - high vertex position resolution (< 5 mm)</p>
- Objectives: >10⁶ pps beam, and invariant mass resolution $\sim 1.5~{
 m MeV}~(\sigma)$

Beam-rate limitations

- few 10⁴ Hz trigger rate limit
 - ▶ Beam of 10⁶ pps: < 1 % of events from pion ion coincidences
 - Continuous TPC readout (VMM3 FEE foreseen)
- Space charge distorsion of drift field $\Delta E/E < 0.5~\%$
 - < 100 kHz tracks in TPC</p>
 - Ion back flow reduced to IBF < 0.5% by combined Micromegas + GEM</p>
 - Additional software drift corrections possible

Pion detection and invariant-mass resolution

- TECHNISCHE UNIVERSITÄT DARMSTADT
- Targeting an invariant-mass resolution of 1.5 MeV (σ) with low background

16.03.2022 I The HYDRA project | THEIA symposium | A. Obertelli

TU Darmstadt

Tracking in non-homogenous B field

- transverse magnetic field components in B field of GLAD
- ExB drift: millimeter displacement compared to vertical drift
- Laser-induced reference tracks to benchmark B-field mapping

The HYDRA prototype

1/3 HYDRA prototype (7% detection efficiency)

- under completion
- field cage and amplification stages built at CERN
- wiring of field cage at GSI
- laser and in-beam validation in Q3/2022
- continuous readout in operation in Q4/2022
- Full system ready from beginning of 2023

metal-core Micromegas pad plane J. Giovinazzo et al., NIMA 892 (2018)

VMM3 chips and SRS readout

Courtesy L. Ji, TU Darmstadt

Method

- production target and secondary target inside GLAD
- Two unknowns (interaction and production cross sections) = two measurements

Matter radius	Measured statistics		
(fm)	$^3_\Lambda { m H}$	$^6_{\Lambda}{ m He}$	
$\mathbf{R} = 1.25 \times \mathbf{A}^{1/3}$	1438(37)	950(30)	
R + 1.0	1105(33)	714(26)	
4.2	683(26)	_	
6.8	243(15)	_	
14.1	3(1)	_	

HYDRA Lol, A. Obertelli, Y. L. Sun et al., G-PAC 2020

TU Darmstadt

Sensitivity of measurement

- Analytical model with 3 physical parameters, 2 targets
- σ_{Λ} : hypernucleus production, $\sigma_{\Lambda R}$: hypernucleus interaction, σ_{R} : beam interaction

$$f(\sigma_{\Lambda R}) = A \left(1 - e^{-B(\sigma_{\Lambda R})d_1}\right) e^{-\left(\frac{L}{\gamma\beta\tau c} + B(\sigma_{\Lambda R})d_2\right)} - A e^{-B(\sigma_{\Lambda R})d_2} + e^{-B(\sigma_{\Lambda R})d_1} + A - 1 = 0$$

S. Velardita et al., in preparation (2022)

where:

$$A = \frac{N_{\Lambda}(d_1) N_{0,d_2}}{N_{\Lambda}(d_1 + L + d_2) N_{0,d_1}} \cdot e^{-n\sigma_R d_2}$$

$$B(\sigma_{\Lambda R}) = n\sigma_{\Lambda R} + \frac{1}{\gamma\beta c\tau} - n\sigma_R$$

$$N_{0,d_1} = I \cdot \alpha t;$$
$$N_{0,d_2} = I \cdot (1 - \alpha) t.$$

16.03.2022 | The HYDRA project | THEIA symposium | A. Obertelli | TU Darmstadt | 20

Sensitivity of measurement

Ongoing realistic simulations to take into account (i) vertex resolution, (ii) feeding from other channels, (iii) realistic efficiency

The HYDRA team at R3B and collaborators

HYDRA core team:

T. Aumann, M. Duer (YI group leader), A. Enciu (PD), L. Ji (PhD), A. Obertelli, D. Rossi, Y. L. Sun (PD), S. Velardita (PhD) *TU Darmstadt, Germany*D. Körper, H. Simon *GSI/FAIR, Germany*H. Alvarez-Pol, Y. Ayyad, J. L. Rodriguez *Universidade de Santiago de Compostela, Spain*L. Fabbietti, R. Gernhaüser *TU Munich, Germany*S. Ota *University of Osaka, Japan*

Collaborators:

T. Galatyuk, T. Kröll, H. Scheit, S. Zacarias (PhD) TU Darmstadt, Germany

- J. Stroth University of Frankfurt, Germany
- J. Benlliure, D. Cortina-Gil Universidade de Santiago de Compostela, Spain
- T. R. Saito RIKEN, Japan; Lanzhou University, China; GSI, Germany
- C. Rappold, O. Tengblad Instituto de Estructura de la Materia, CSIC, Spain
- A. Corsi, E. C. Pollacco CEA, France

Theory support:

H.-W. Hammer, R. Roth *IKP, TU Darmstadt, Germany*R. Wirth *FRIB, USA*M. Bleicher, A. Botvina, H. Elfner *J.W. Goethe Universität, Frankfurt am Mainz, Germany*

Summary

- HYDRA @ R3B: high-resolution tracker (TPC) for hypernuclei invariant mass
- HYDRA prototype under construction (ready 2023 with continuous readout)
- First proposal to determine the size of ${}^3_{\Lambda}$ H and ${}^6_{\Lambda}$ He at FAIR G-PAC (2022)
- Future cases: study of the two-proton halo candidate ⁷_ΛBe, binding energies along C,O isotopic chains

