

Analysis of the SIS100 magnet cooling

Alexander Bleile

GSI, Darmstadt

- SIS100 cooling concept
- Analysis of the single dipole cooling
- Arrangements needed for parallel cooling
- Conclusions

Nuclotron Ring Cooling

1. vacuum shell 2. nitrogen shield 3. supply header 4. return header 5. dipole magnet 6. quadrupole magnet 7. subcooler 3 2 x 100 parallel channels

S

Ν,

Ν,

 IN_2

SIS100 Ring Cooling

Common Specification for Cryogenic Feedboxes (M.Kauschke, Y.Xiang, Ver. 2010.12.15)

SIS100 Sector P₁, T₁<Tsl $T_2 < T_1$ P₃, T₃

GSI

SIS100 dipole cooling

SIS100 dipole cooling

Quadrupole Doublet

SIS100 dipole cooling

Heat load:static:7 Wdynamic:up to 60 W (triangular cycle)

Mass flow: defined by the total heat load

Pressure dprop:	defined by the mass flow rate						
	and hydraulic resistance of cooling channels:						
cable inner diameter:		d = 4.7 mm	iron yoke: d = 10 mm				
dipole:		L = 54 m + 54 m					
quadrupole:		L = 34 m + 27 m					

Inlet - sub-cooled helium

$$P_{in} = 1.5 \text{ bar}, T_{in} = 4.5 \text{ K}$$

Coil out: P = 1.1 bar, two-pase (4.3 K)

Joke out: P = 1.1 bar, two-phase, x = 0.9 - 1.0

Single Magnet: T-S Diagram

A.Bleile, cryo MAC at FAIR, Feb. 2012

GSI

Operating Modes

Operating cycles

Expected Losses

Measurements on dipole prototypes:

dynamic losses: up to 60 W in the triangular cycle

static losses: up to 10 W

losses in the vacuum chamber (to be cooled separately): up to 14 W

Quadrupole unit: 50 % of dipole losses (estimated)

Dipole cooling

Busbar + Coil: 54 m + 54 m Minor losses: ξ = 26.0

 $P_1 = 1.6$ bar, $T_1 = 4.51$ K (subcooled) $P_3 = 1.1$ bar, $T_3 = 4.31$ K

$$P_{total} = 40 \text{ W: } m = 2.4 \text{ g/s}$$

 $x_2 = 0.30$
 $x_3 = 0.88$

 P_{total} = 70 W: m = 2.1 g/s x₂ = 0.56 T₃ = 6.52 K

Two-Phase Cooling

$$Q_{yoke} = 30 W$$

T₁ = 4.55 K

Two Phase Flow: Baker Diagram

A.Bleile, cryo MAC at FAIR, Feb. 2012

flow pattern map

Y. Filippov/Cryogenics 39 (1999) 59-68

flow pattern map: P = 70 W

Y. Filippov/Cryogenics 39 (1999) 59-68

flow pattern map: P = 40 W

Y. Filippov/Cryogenics 39 (1999) 59-68

Y. Filippov/Cryogenics 39 (1999) 59-68

Ptotal = 20 WPcoil = 4 W

 $P_1 = 1.6$ bar, $T_1 = 4.51$ K m = 3.0 g/s

 $x_3 = 0.39$

flow pattern map: P = 20 W, Pin = 1.35 bar

Y. Filippov/Cryogenics 39 (1999) 59-68

Ptotal = 20 W Pcoil = 4 W

 $P_1 = 1.35$ bar, $T_1 = 4.51$ K m = 1.9 g/s

Coil:
a.
$$P = 1.5$$
 bar, $x = 0.05$
b. $P = 1.1$ bar, $x = 0.16$
lron:
c. $P = 1.1$ bar, $x = 0.16$
d. $P = 1.1$ bar, $x = 0.58$

x3 = 0.58

Two-Phase Cooling

Potential problems:

•departure from nucleate boiling:

not expected because of very small heat flux •stratifyed flow patterns:

dangerous only when occures in the coilinstabilities of two-phase flow in vertical channels:

should be small $(\rho_L / \rho_V \approx 7)$

•instabilities due to parallel channels

Arrangements needed for parallel cooling:

subcooled helium in the supply header

bypass valve in the end box

adjustments of hydraulic resistance for each channel

Adjustement of hydraulic resistances

Sector 1:

18 dipoles
14 quadrupole doublets
1 connection cryostat (missing dipole)
47 parallel channels

quadrupole modules:

each doublet has 2 parallel flow branches

- Q (6 units in sector)
- Q + Steerer
- Q + Chr. Sextupole

Multipole Corrector cooled separately

Magnet Type	Sector						
	1	2	3	4	5	6	
Dipole	18	18	18	18	18	18	
Q + ST +Q	3	3	3	3	2	3	
MC + Q + ST +Q	2	2	2	2	0	2	
Q + ST + Q + CV (CH)	8	8	8	8	8	8	
Connection Cryostat	2	2	2	2	2	2	

Nuclotron Cooling vs. SIS100 cooling

Nuclotron:

- 2 sectors
- 100 parallel chanels / sector
- 4.0 mm cable inner diameter
- beam vacuum chamber cooled by yoke

<u>SIS100:</u>

- 6 sectors
- 47 parallel chanels / sector
- 4.7 mm cable inner diameter
- beam vacuum chamber cooled by helium flow

Conclusions

- SIS100 cooling systems is based on Nuclotron design
- the number of parallel channels is reduced by factor of two
- the phase separation in the coil is not expected
- adjustment of hydraulic resistance has to be performed for each type of cooling channel
- additional valve can be installed on each channel for fine adjustement

Two Phase vs. Supercritical

Two-Phase Cooling

Hydraulic Resistance

