Fair	Technical Guideline	Number	13.5e
B-MT	Temperature Sensor Installation for Cryogenic Purposes	Status	2011-08-02
 Definition Sensor Material Leadwir Applicat Sensor 	ns Applications down to 30 K s es connection ion in operation position Protection and Labelling Applications below 30 K.		

Leadwire connection4

Application in operation position5

Sensor Protection and Labelling7

Wire Routing and Thermal Interception7

Sensor- and Leadwire Testing7

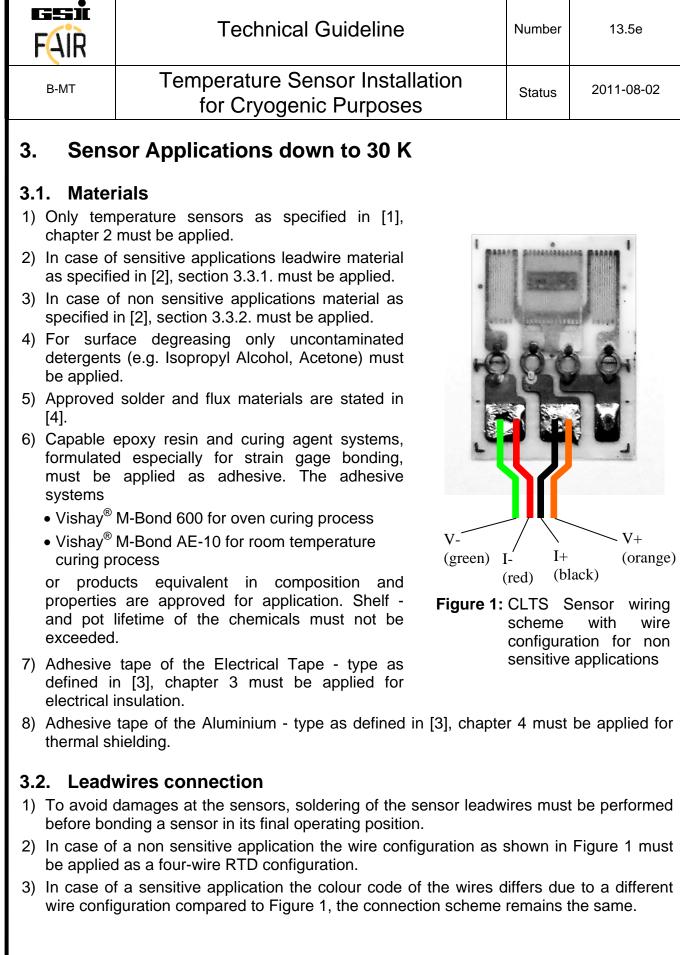
7.	Connection to Feedthrough and Labelling	7
	Documentation	
	References	

1. Scope

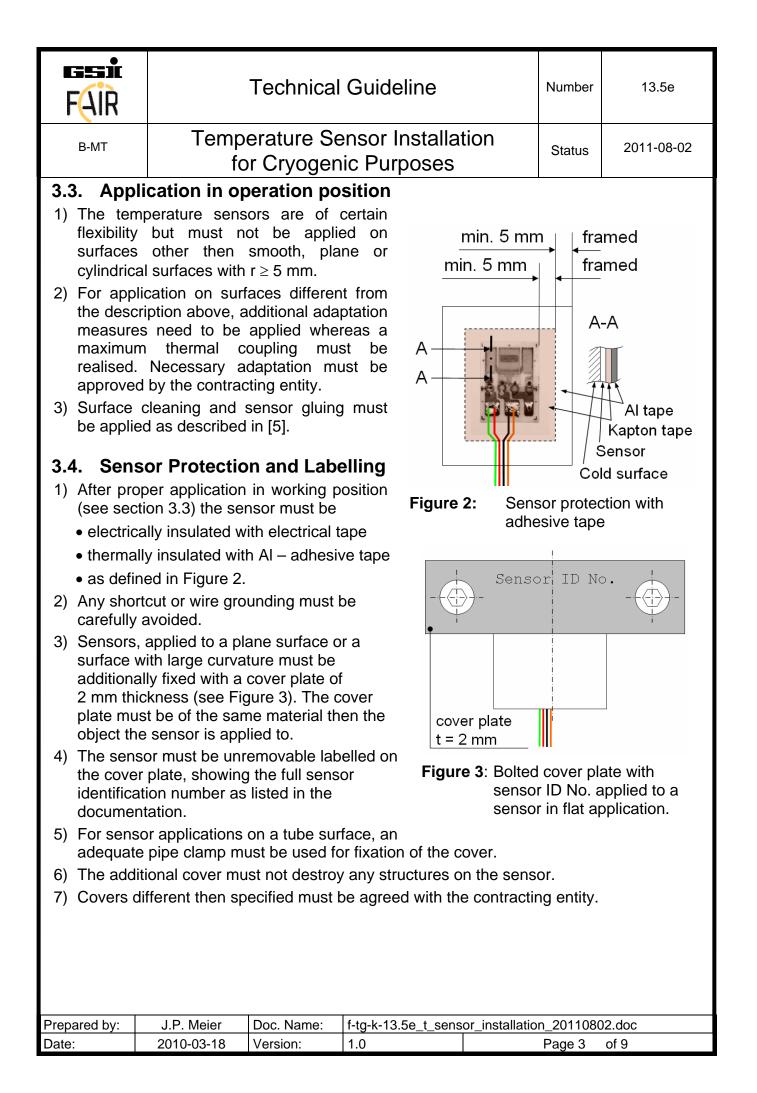
4.2.

4.3.

4.4.


5. 6.

- 1) This document defines the requirements for installation of temperature sensors for cryogenic purposes in applications like
 - magnet cryostats,
 - cryogenic supply systems,
 - cryogenic transport systems,
 - cryogenic current lead boxes,
 - auxiliary cryogenic systems
 - within FAIR accelerators.
- 2) This document is NOT related to any other purpose as aforementioned.


2. Definitions

- 1) Sensitive applications in terms of this document are temperature sensor applications
 - where electromagnetic stray fields are inducing additional noise,
 - where high measurement resolutions are required.

Prepared by:	J.P. Meier	Doc. Name:	f-tg-k-13.5e_t_sens	or_installation_20110802.doc
Date:	2010-03-18	Version:	1.0	Page 1 of 9

Prepared by:	J.P. Meier	Doc. Name:	f-tg-k-13.5e_t_sens	or_installation_20110802.doc
Date:	2010-03-18	Version:	1.0	Page 2 of 9

FAIR	Technical Guideline	Number	13.5e
B-MT	Temperature Sensor Installation for Cryogenic Purposes	Status	2011-08-02

4. Sensor Applications below 30 K

4.1. Materials

- 1) Only temperature sensors as specified in [1], chapter 3 must be applied. Other sensor types must be agreed with the contracting entity in writing.
- 2) In case of sensitive applications leadwire material as specified in [2], section 3.3.1. must be applied.
- 3) In case of non sensitive applications material as specified in [2], section 3.3.2. must be applied.
- 4) Adhesive tape of the Electrical Tape type as defined in [3], chapter 3 must be applied for electrical insulation purposes.
- 5) Approved solder and flux materials are stated in [6].

4.2. Leadwire connection

- To avoid damages at the sensors, soldering of the sensor leadwires must be performed before mounting a sensor in its final operating position.
- In case of a sensitive application the sensor must be connected by applying a four-wire RTD configuration as shown in Figure 4.
- In case of a non sensitive application the colour code of the wires differs due to a different wire configuration compared to Figure 4, the connection scheme remains the same.
- 4) The detailed connector to lead configuration for connection of a CERNOX[®] sensor is dependent of the packaging type. For details see [6].
- 5) The colour code of the leads must be assigned to the signal type as shown in Figure 4.

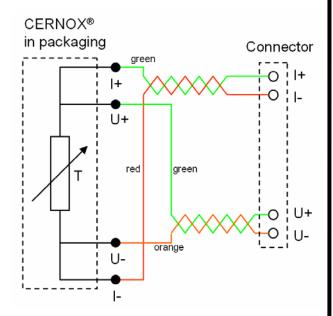
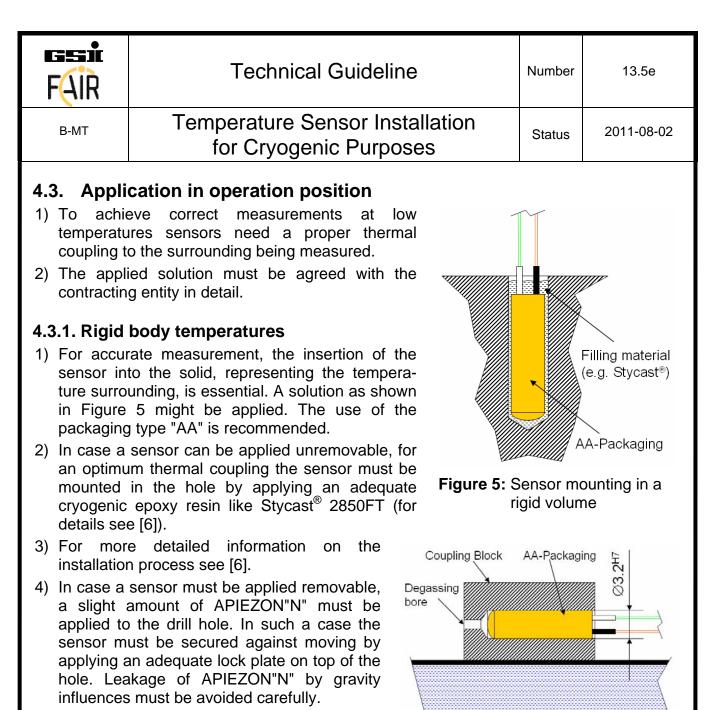



Figure 4: CERNOX[®] sensor wiring scheme with wire configuration for sensitive applications.

Prepared by:	J.P. Meier	Doc. Name:	f-tg-k-13.5e_t_sens	or_installation_20110802.doc	
Date:	2010-03-18	Version:	1.0	Page 4 of 9	

- 5) A proper thermal shielding of the measurement position is required.
- Virtual vacuum leaks induced by dead volumes must be avoided by applying adequate venting drill holes, respectively vacuum degassing of filling materials.
- The shielding and application method (removable or unremovable) must be agreed with the contracting entity.

Figure 6: Sensor mounting on tubing surfaces

4.3.2. Low accuracy fluid temperatures

1) For measurements of fluid temperatures with low requirements on accuracy, the measurement at the outside of cryogenic tubing is sufficient.

Prepared by:	J.P. Meier	Doc. Name:	f-tg-k-13.5e_t_sensor_installation_20110802.doc		
Date:	2010-03-18	Version:	1.0	Page 5 of 9	

F AIR		Technical	Guideli	ne	Number	13.5e
B-MT	•	Temperature Sensor Installation for Cryogenic Purposes				2011-08-02
 copper an 3) In case a sensor mi Stycast[®] 2 4) For more 5) In case a applied to applying a 6) A proper f 7) The shiele the contra 4.3.3. High a 1) For meas with high sensor m cryogenic 2) A solutio must be a 3) The quil adequate thin walle 4) A quill ins applying gasket (e. 5) The const on pressu according equipment 6) For an sensor m by applying [6]). 7) Virtual va degassing 8) When ever 	as shown in F ad being braze a sensor can l ust be mounte 2850FT (for de detailed inform sensor must l o the drill hole. an adequate lo thermal shieldi ding and appli acting entity. accuracy flui surements of requirements of requirements sust be applied tubing within t n as demons applied. I insert must stainless stee d shaft. Sert must be fix a tube fitting g. SwageLok [®] truction must for a tube fitting g. SwageLok [®] truction must for a tube fitting a tube fitti	Figure 6 must d to the tubing be applied und d in the hole stails see [6]). nation on the be applied re In such a cat ck plate on to ng of the meat cation metho id temperature fluid temperature at the fluid curre strated in Figure to the inst the fluid curre strated in Figure at be made I material sho ked He-leak to y with cuttin). ulfil all require if identified a suropean pr 23/EC [8]. rmal coupling the cryogenic aduced by de resin filling. temperature	ibe applie g. nremovab by applyin installation movable, ase the se p of the he asurement d (remova ures ratures cy, the side of ent. gure 7 e from owing a ight by ig ring ements is such ressure in sert epoxy res ad volume	d. The coupling b le, for an optimu g an adequate co of process see [6], a small amount of nsor must be see ole. position is required ble or unremoval	Im therma ryogenic e of APIEZC cured aga red. able) must Quill insert	al coupling the epoxy resin like DN"N" must be inst moving by be agreed wit Filling material Stycast®
Prepared by: Date:	J.P. Meier 2010-03-18	Doc. Name: Version:	f-tg-k-13.50 1.0	e_t_sensor_installati	on_2011080 Page 6	D2.doc of 9

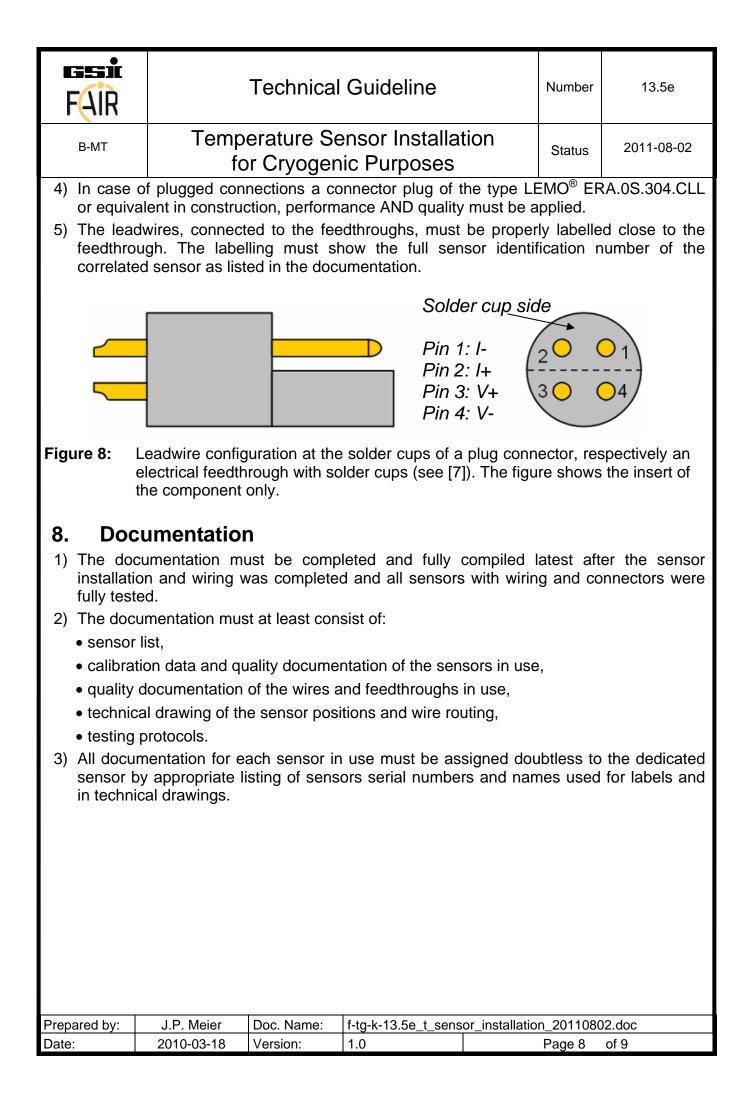
F <mark>air</mark>	Technical Guideline	Number	13.5e
B-MT	Temperature Sensor Installation for Cryogenic Purposes	Status	2011-08-02

4.4. Sensor Protection and Labelling

- 1) Any shortcut or wire grounding of lead wires must be carefully avoided.
- 2) The sensor must be labelled; if somehow possible in an unremovable manner; showing the full sensor identification number as listed in the documentation.

5. Wire Routing and Thermal Interception

- 1) All wire routing must be optimised for
 - low heat load,
 - low noise induction,
 - practical wiring paths.
- 2) An appropriate strain relief must be applied to the leadwire in the sensor position.
- 3) The leadwire must be thermally intercepted on the same temperature level as the sensor. For proper thermal interception of the lead wires see [6].
- 4) Before the lead wire is connected to an electrical feedthrough, it must be thermally intercepted at the temperature level of the thermal shield.
- 5) A free length of \geq 300 mm in front of the electrical feed through must provide a low heat load onto the thermal shield.
- 6) The warm end wiring must allow an unhindered handling of the cable flange the lead wire is connected to.
- 7) Any solutions must be agreed with the contracting entity.


6. Sensor- and Leadwire Testing

- 1) To avoid installation of broken sensors or lead-wires the sensor with the leadwires installed must be tested prior to installation. The test must be performed with an adequate ohm-meter using a four-wire RTD configuration.
- 2) For testing, the sensor must be smoothly warmed e.g. by applying a warm air stream.
- 3) The test must be repeated after full installation.
- 4) No faulty sensors or leadwires are allowed.
- 5) All testing must be recorded within a dedicated protocol.

7. Connection to Feedthrough and Labelling

- 1) The leadwires must be connected to electrical feedthrough types specified by [7].
- 2) The dedicated choice of feedthrough (solder cup connection or plug connection) is dependent of the definition within the correlated detailed specification of the cryogenic system.
- Only feedthroughs of the 4 pin configuration must be applied. For the appropriate wire configuration see Figure 8.

Prepared by:	J.P. Meier	Doc. Name:	f-tg-k-13.5e_t_sens	or_installation_20110802.doc
Date:	2010-03-18	Version:	1.0	Page 7 of 9

F <mark>air</mark>	Technical Guideline	Number	13.5e
B-MT	Temperature Sensor Installation for Cryogenic Purposes	Status	2011-08-02

9. References

- [1] Technical Guideline No. TR3.52e: Temperature Sensors for Cryogenic Purposes, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany, 2010
- [2] Technical Guideline No. TR3.56e: Low Power Cabling for Cryogenic Purposes, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany, 2010
- [3] Technical Guideline No. TR3.57e: Adhesive Tapes for Cryogenic Purposes, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany, 2010
- [4] Strain Gage Soldering Techniques, Document Number: 11089, Revision 15-Aug-07, Vishay Intertechnology, Inc., http://www.vishay.com/docs/11089/tt609.pdf
- [5] Strain Gage Installations with M-Bond 43-B, 600, and 610 Adhesive Systems, Document No.:11130, Revision 14-Apr-09, Vishay Intertechnology, Inc., http://www.vishay.com/docs/11130/b-130.pdf; 2010
- [6] Appendix C, Sensor Packaging and Installation; Lake Shore Cryotronics, Inc.; http://www.lakeshore.com/pdf_files/Appendices/LSTC_appendixC_I.pdf; 2010
- [7] Technical Guideline No. TR3.53e: Low Voltage Feedthroughs for Cryostat Applications, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany, 2010
- [8] Directive 97/23/EC, European parliament and the council of the European Union, http://eur-lex.europa.eu, 1997

Prepared by:	J.P. Meier	Doc. Name:	f-tg-k-13.5e_t_sensor_installation_20110802.doc		
Date: 2	2010-03-18	Version:	1.0	Page 9 of 9	