F AIR	Technical Guideline	Number	7.24e
B-MT	Pressurised Leak Testing of Cryogenic Tubing	Status	2011-04-04
Contents 1. Scope	20		1

2.	Definitions	.1
3.	Codes and Standards	.1
4.	Basic Requirements	2
4.1.	Surrounding conditions	2
4.2.	Required Documentation	2
4.3.	Required Equipment and Media	2
5.	Test Preparation	.3
6.	Checks and Tests	3
6.1.	Document and Certification Check	3
6.2.	Pressure Drop Test	3
6.3.	Pressurised He Leak Test	4
7.	Documentation	.4
7.1.	Testing Protocol Requirements	4
8.	References	5

1. Scope

- 1) This document defines requirements and procedures to be executed for pressurised leak testing of tubing for conduction of liquid and gaseous cryogenic media in applications like
 - magnet cryostats,
 - cryogenic supply systems,
 - cryogenic transport systems,
 - cryogenic current lead boxes,
 - auxiliary cryogenic systems

within FAIR accelerators.

- 2) This document is NOT related to any other purpose as aforementioned.
- 3) This document does NOT represent a replacement for any relevant technical standards in terms of 97/23/EC or the AD2000 Code.

2. Definitions

1) C*ryogenic media* in terms of this guideline are liquefied pressurised and non pressurised Helium (LHe) and Nitrogen (LN₂) as well as gaseous Helium (GHe) and gaseous Nitrogen (GN₂).

3. Codes and Standards

- 1) The European pressure equipment directive 97/23/EC [1] defines the legal standards for components and assemblies being recognised as pressure equipment.
- 2) The AD 2000 Code [2] defines the engineering and documentation standards in terms of pressure equipment.
- 3) The AD 2000-Technical Bulletin HP 30 [3] defines the requirements for pressure testing.

Prepared by:	J.P. Meier	Doc. Name:	f-tg-k-7.24e_pressurised	_leak_testing_of_cryogenic_tubing_20110404.doc
Date:	2010-04-30	Version:	1.0	Page 1 of 5

F AIR	Technical Guideline	Number	7.24e
B-MT	Pressurised Leak Testing of Cryogenic Tubing	Status	2011-04-04

4. Basic Requirements

1) This test must NOT be performed with components or assemblies classified as pressure equipment in terms of [1] before being correctly certified according to [2].

4.1. Surrounding conditions

- 1) The tests must be performed in a clean, low dust and dry surrounding.
- 2) No contamination e.g. with dust, grease or oil must be accepted during testing.
- 3) The test surrounding must provide the safety standards as defined in [3].

4.2. Required Documentation

- 1) All documentation must be available on site at the date of testing.
- 2) In case of pressure equipment in terms of [1] the following documentation must be available:
 - certificate as defined in [4] of a passed pressure test according to [2]
- 3) In any case the following documentation according to [2] must be available:
 - testing certificates for all welding seams applied at the tubing,
 - documentation of all safety relevant calculations,
 - certificates proving the pressure resistance for all tube fittings, gaskets and flanges applied to the tubing.
- A copy of the calibration certificate of the He leak tester and pressure gauge in use for the tests is required and must be added to the documentation.
- 5) None of the calibration certificates must show a date of last calibration older then one year at the date of testing.
- 6) A testing protocol showing at least the content as defined in 7.1 must be prepared prior to the test procedures being executed.

4.3. Required Equipment and Media

- 1) All equipment used for the pressure test must be suitable for the applied testing pressure, e.g. in terms of pressure range and safety.
- 2) The following equipment and media is required **F** for the tests:
 - a set of blanking flanges and seals suitable for all flanges not in use during testing,

• compressed He gas cylinder with pressure regulator,

	<u> </u>		<u> </u>	
Prepared by:	J.P. Meier	Doc. Name:	f-tg-k-7.24e_pressurised	_leak_testing_of_cryogenic_tubing_20110404.doc
Date:	2010-04-30	Version:	1.0	Page 2 of 5

Figure 1: Pressure testing scheme

rssi F <mark>a</mark> ir	Technical Guideline	Number	7.24e
B-MT	Pressurised Leak Testing of Cryogenic Tubing	Status	2011-04-04
• a port fla	unge with calibrated pressure gauge (accuracy class 0.1	or bette	r) showing an

- adequate pressure range,
- He tight valve,
- flexible or rigid tube and fittings,
- calibrated He leak tester with a most sensible range of at least 1*10⁻⁸ mbar*L/s providing a sniffing mode.

5. Test Preparation

- 1) All relevant preparations and safety precautions as defined in [3] for performing a gaspressure test must be prepared.
- 2) A setup as described in Figure 1 must be prepared.
- 3) The test setup itself up to the test volume must be proven as pressure resistant and He tight within the relevant pressure range.

6. Checks and Tests

1) For pressure testing the checks and tests 6.1 to 6.3 must be performed following the listed sequence.

6.1. Document and Certification Check

- 1) All documentation listed in 4.2 must be checked for completeness.
- 2) In case of incomplete documentation, the vacuum test must be declared as failed.

6.2. Pressure Drop Test

- 1) The basic leak tightness must be demonstrated by applying the pressure drop method.
- 2) Only He gas must be used for pressurising.
- 3) The test pressure being applied must be calculated as the maximum allowed pressure for the technical system.
- 4) Due to operation conditions of the tubing (within insulation vacuum surrounding) the additional pressure difference of 1 bar must be considered when calculating the test pressure.
- 5) The applied inner pressure must be proven as constant for at least 24 h.
- 6) In case of a pressure drop more then 0.1 % during 24 h, the leak test must be declared as failed.

Prepared by:	J.P. Meier	Doc. Name:	f-tg-k-7.24e_pressurised	_leak_testing_of_cryogenic_tubing_20110404.doc
Date:	2010-04-30	Version:	1.0	Page 3 of 5

F AIR	Technical Guideline	Number	7.24e
B-MT	Pressurised Leak Testing of Cryogenic Tubing	Status	2011-04-04

6.3. Pressurised He Leak Test

- 1) In case of any pressure drop, leaks must be detected by applying a He sniffing test as long as the test volume is still pressurised.
- 2) Existing leaks must be marked and documented.

7. Documentation

- 1) All relevant certificates must be provided with the documentation.
- 2) All described checks and tests must be documented in a testing form agreed by the contracting entity.
- 3) The original documentation must be handed out to the contracting entity.
- 4) A digital copy must be stored in EDMS following relevant guidelines for EDMS access and usage. The EDMS storage must be agreed with the contracting entity.
- 5) Any measured values must be documented in writing within a protocol as defined as follows.

7.1. Testing Protocol Requirements

- 1) The complete testing protocol must show comprehensible structure and content documenting each single test being executed.
- 2) The following information must be at least documented within the cover sheet:
 - test identification,
 - address of Company or Institute,
 - identification of Department,
 - names of testing personnel,
 - name of quality testing leader,
 - date and time,
 - identification of tested object,
 - serial number of tested object,
 - test result,
 - number of pages (including photo prints).
- 3) The measurement equipment in use must be documented at least with
 - device identification,
 - serial number,
 - date of last calibration,
 - applied measuring range.
- 4) All tests, described in the chapter 6 must be documented at least with
 - brief description of testing process,
 - test schemes if applicable (e.g. vacuum scheme),

Prepared by:	J.P. Meier	Doc. Name:	f-tg-k-7.24e_pressurised	l_leak_testing_of_cryogenic_tubing_20110404.doc
Date:	2010-04-30	Version:	1.0	Page 4 of 5

Fair	Technical Guideline		7.24e
B-MT	Pressurised Leak Testing of Cryogenic Tubing		2011-04-04
 relevant registere 	device settings, ed non-conformities.		

- nominal values,
- measured values,
- ambient temperature, pressure and relative humidity,
- photos of non-conformities (if applicable),
- single ratings,
- full test rating
- in clearly separated chapters.
- 5) In case a component failed the test and was repaired, the documentation of the repair work must be delivered within the documentation of the repeated and passed test.
- 6) All defined tests and procedures must be signed by the executing personnel.
- 7) A conclusion page must indicate the all over test result clearly. In case the full acceptance test failed a brief explanation must be stated.
- 8) The protocol must be crosschecked and signed by a person, responsible for the product quality of cryostat vacuum vessels.

8. References

- [1] Directive 97/23/EC, European parliament and the council of the European Union, http://eur-lex.europa.eu, 1997
- [2] AD 2000-Code; Verband der TÜV e. V.; Beuth Verlag GmbH; Berlin; Germany; 2009.
- [3] AD 2000-Technical Bulletin HP 30, Durchführung von Druckprüfungen; Verband der TÜV e. V.; Beuth Verlag GmbH; Berlin; Germany; 2009
- [4] AD 2000-Technical Bulletin HP 512, Schlußprüfung und Druckprüfung; Verband der TÜV e. V.; Beuth Verlag GmbH; Berlin; Germany; 2009

Prepared by:	J.P. Meier	Doc. Name:	f-tg-k-7.24e_pressurised	l_leak_testing_of_cryogenic_tubing_20110404.doc
Date:	2010-04-30	Version:	1.0	Page 5 of 5