

Work-package 4: Spill Detector Developments and Analysis

-- Status at GSI & Perspectives for the Work-package --

Peter Forck, Rahul Singh,

Plamen Boutachkov, Timo Milosic, Maxim Saifulin, Jiangyan Yang, GSI IFAST-REX 2nd Collaboration Meeting, 17th Feb. 2022

Status at GSI:

- Detector types (plastic and inorganic scintillators)
- Scaler and TDC-based data acquisition
- Data analysis
- Ideas concerning Machine Learning

Vision for work-package 4

Standard Scintillator, Electronic and Data Acquisition

Scintillator at HEST: Analog and digital chain: Scintillator Housing light PMT х Base guide long cable $\approx 50...300$ m 300 MHz discriminator 250 MHz scaler Struck 3820 С SC ti VME Ρ al mi **128 channels** ng U er

Signal chain:

- Plastic scintillator
- Scaler readout
- Entire cycle stored with typ. sampling t_{read} = 10 μs
- Further detectors & SIS current
- Various online analysis tools

Restriction:

Maximum average count rate:

 $r_{aver} \approx 3 \cdot 10^6 \text{ 1/s}$

due to pulse length, PMT property and cable dispersion

Very low radiation tolerance of plastics

Advantage of particle counting:

- Single particle detection, well to be triggered
- Prompt detector response, better 1 ns
- No noise or background
- \Rightarrow Could be directly compared to MADX tracking simulation

Development of inorganic ZnO:In Scintillators

Requirements:

- Short pulses smaller than few ns
- Moderate energy resolution for stable discriminator level
- Radiation hardness
- \Rightarrow Test of inorganic ZnO:In as ceramics (first test with \emptyset 5mm)

Example for fast pulses

Beam: U at 300 MeV/u → FWHM < 1 ns (short cable) Using fast PMT (Hama. H13661)

Example pulse height spectrum

Beam: Xe at 300 MeV/u → Energy resolution sufficient!

P. Boutachkov, M. Saifulin (GSI) in collaboration with Russian and Latvian institutes

Radiation Hardness of inorganic ZnO:In Scintillators

Example: Beam: : U and Xe at 300 MeV/u

Compilation of e.g. 15 mm² tiles 500 ZnO:In ¹²⁴Xe@300MeV/u Two scintillator tiles detector, ZnO:In ²³⁸U@300MeV/u (Amp. scaled by 0.58) 400 detector active area 30x15 mm² BC400 sci. destroyed due to rad. damage Amp [mV] 300 ZnO:In scint. tiles on fused silica light guide 200 100 нŦн 0 1000 2000 3000 4000 Fast radiation-hard scintillation detector prototype Dose [kGy]

Development:

1E+12 ²³⁸U/cm², or 3E+12 ¹²⁴Xe/cm²

Advantage:

- Much higher radiation hardness
- Fast counting with $r_{aver} = 10^7 \text{ 1/s}$
- Can be used as detector for spill characterization

Development: Large area detector possible!

Possible restriction: Too low output for protons and light ions (?)

P. Boutachkov, M. Saifulin (GSI) in collaboration with Russian and Latvian institutes

Preliminary: ⁷⁸Kr @ 300 MeV/u, 98% efficiency compare to BC400

Large area 50x50 mm² needed

Ionization Chamber Measurement

Read-out of IC:

Current-to-frequency converter:

 $I_{input} \rightarrow$ charging of integration capacitor when threshold of Q = 100 fC reached:

1. one pulse out

2. clearing of capacitor via opto-coupler GSI type: conversion: 0.1 / 1 / 10 pC/pulse

Advantage: bipolar noise cancelation best performance concerning sensitivity and bandwidth *Example:* Beam: Bi⁶⁷⁺ at 250 MeV/u, un-bunched beam quad. scan t_{read} =20 µs, $r_{aver} \approx 0.5 \cdot 10^6$ 1/s

Observation:

- same time structure measured with IC & Scint.
- sensitivity & noise reduction required

Usage of Beam Loss Monitors for high Current Beams

Basic idea for Beam Loss Monitors BLM usage: A lost ion impacting on vacuum pipe or insertion \Rightarrow detection of shower by scintillator based BLM Advantage: cheap system, very large dynamic range \Rightarrow could be used for high ion currents Restriction: $r_{aver} < 3 \cdot 10^6 1/s$ Status: Detailed test pending

Example: Beam: : Kr³⁴⁺ at 900 MeV/u, un-bunched beam

The signal for the BLM by lost ions,
while scintillator detects trans. ions
Observation:
Same time structure is observed
⇒ BLM serves as a
representative for micro-structure

Characterization for Micro-Structure

Calculation of Fourier Transformation

 \rightarrow Steep rise time \Leftrightarrow larger cut-off frequency

Duty factor depends on readout time \rightarrow binning of data

Care for comparison of measurements from different acc.

Bunched Beam Observation with 1 ns Time Scale

Bunched beam leads to short 'bunches' of the extracted beam Measurement technique:

Particle arrival is measured with respect to the phase of the acc. frequency f_{acc} & with respect to the successive particle

Timo Milosic et al. (GSI), IBIC 2021

Effect of bunched Beam Extraction

Bunched beam extraction by tune scan: Beam: Bi⁶⁸⁺ with 300 MeV/u, with f_{rf} = 3.62 MHz

Result:

- Large improvement of duty factor by bunching
- Better for higher bunching freq. (within some range)
- \rightarrow Poisson limit almost reached

[improvement only if
$$T_{transit} \approx \frac{1}{f_{synch}}$$

Beam diagnostics demand:

Faster detector needed as Poisson limit depends on count rate

However: This is unacceptable for many users, due to detector dead time $t_{dead} = 0.1 \dots 10 \ \mu s \approx 1/f_{rf}$ Additional mitigation to be installed ≈ 2013 : 80 MHz high frequency bunching cavity

Bunched beam Extraction (Quad driven)

P. Forck et al., 'Measurements and Improvements of the Time Structure of a slowly extracted Beam from a Synchrotron,
Conference Proceeding EPAC2000, p. 2237, Vienna 2000.
R. Singh et al., 'Slow Extraction Spill Characterization From Micro to Milli-Second Scale', J. Phys.: Conf. Ser. 1067 072002 (2018)

Particle Counting for pile-up Rejection using Machine Learning

Example of a piled-up, baseline shifted signal

Development:

- Detector signals occur very close in time
 - \rightarrow difficulties in their separation and identification
- Comparison: traditional threshold algorithms to template matching and convolutional neural networks (CNN)
- Focus on accuracy and computational complexity for implementing in FPGAs
- Hardware: Fast digitizer from Teledyne SP or Caen
- R. Singh & P. Boutachkov (GSI), S. Engel, H. Raza and V. Mohan (University of Essex)

Synthetic training/test data generation

- Example: 1ch digitizer 1-5GSa/s
- 14 bit

Status at GSI:

- > Detailed investigations with scintillators, very high time resolution
- Development of inorganic scintillators, high radiation hardness
- ➢ DAQ: TDC → recent FESA-based code finished, Scaler → outdate software Drawback: Not directly portable to other facilities
- Ideas related to ML pile-up and baseline correction

Visions for the work-package 4:

- Common experimental campaign at several facilities (GSI: shutdown mid 2022-mid 2023)
 Vision: Experiments with similar detector and data acquisition
- > Vision: Versatile data analysis e.g. in Python available for experts
- Vision: Measurements for general understanding of improvements

Proposals for next steps:

- > Online meeting with detector experts from all facilities in the up-coming month
- Comparison of experimental data and common data analysis
- \Rightarrow Please propose or confirm interested delegates for the work-package 4

Thank you for your attention!