

Micro-spill structure studies at GSI

2nd IFAST REX collaboration meeting

Feb 17th, 2022

R. Singh, P. Forck, T. Milosic, S. Sorge and J. Yang

- Beam instrumentation for micro-spill investigations
- Inherent spill smoothing via transit time and enhancement mechanisms
- External tune modulation for spill smoothing

GSI Heavy Ion Synchrotron SIS18 (Bρ = 18 T-m): Overview

→ SIS18 → booster for SIS-100

- ➤ Third order resonance → Quad driven and knock-out extraction in horizontal plane → both coasting and bunched beams
- ➤ Variety of fixed target experiments with detector times from 100 µs to 100 ns
 → upto 20s spills

Standard scintillator data acquisition (Counting in defined intervals)

Advantage of particle counting:

- every particle detected/counted, no noise or background -> could be directly compared to particle simulation
- Parallel digitalization of various detectors: Scintillators, Ionization Chambers, SEMdetectors, diamond detector
- Low amount of data and correlation between various detectors

R. Singh, February 17th, 2022

Spill characterization by counting in defined intervals

5

Spill characterization by counting in defined intervals

Characterization by time of arrival measurements

Measurement technique:

rf master

- > Particle arrival is measured with respect to the phase of the acc. frequency f_{acc}
- > Particle arrival with respect to each other
- ➤ Closer to user detectors → Bunched beam analysis

Particle arrival intervals

Histogram of time between successive particles

R. Singh, February 17th, 2022

Slow extraction by tune ramp (Quad driven)

Extraction settings and transit time distribution (Quad driven)

- ➢ For smaller sextupole strength: Tune ramp should start close to resonance for same spill length
- Amplitude dependence on the sextupole fields : For small S and $\overline{\epsilon_Q}$ at any given A \rightarrow larger Transit time and smaller spiral step compared to large S. Analytical dependence in Eq. 4.17 in PIMMS.
- > Qualitatively: Transit time distribution broader if we start close to resonance $\overline{T_{tr}} \propto \frac{1}{\overline{\epsilon_0}} \Delta T_{tr} \propto \frac{\Delta \epsilon_Q}{\overline{\epsilon_0}^2}$

L. Badano et al., ``Proton-ion medical machine study (PIMMS) part I", CERN/PS/ 99-010 (DI), Geneva (1999). S. Sorge et al., ``Measurements and Simulations of the Spill Quality of Slowly Extracted Beams from the SIS-18 Synchrotron", J. Phys.: Conf. Ser. 1067 052003, (2018).

R. Singh et al., ``Smoothing of the slowly extracted coasting beam from a synchrotron", <u>https://arxiv.org/abs/1904.09195</u> (2019).

PIMMS Report part 1

R. Singh, February 17th, 2022

Extraction settings and transit time distribution (Quad driven)

Transit time distribution: Dependence on sextupole strength S & distance to resonance $\epsilon_0(t)$

i.e.
$$T_{transit} = T_{transit}$$
 (S or $\epsilon_Q(t)$) 1 turn ~ 1 us in SIS-18

Histogram of transit time T_{transit}

Larger sextupole strength: Effect of transit time on spill

Smaller sextupole strength: Effect of transit time on spill

- Sextupole strength (S), distance to resonance
 (\vec{\vec{e}_Q}) and Emittance (A) are NOT independent
 parameters because of spill length and shape
 constraint
- ➤ Low pass filtering of stable phase area fluctuations, $f_{cut} \propto 1/\Delta T_{tr} \propto \overline{\epsilon_Q}$
- The transit time induced delay in spill meas. is a problem for microspill feedback control

G 55 T

Experiments: Sextupole strength variation

Experiment: Ar¹⁸⁺, 300 MeV/u

Sextupole strength reduction affects duty factor F_w 0.3 → 0.58

- > Duty factor F is time dependent (changing $\overline{\epsilon_Q}$)
- ► For lower S, lower cutoff filtering $f_{cut} \propto 1/\Delta T_{tr}$
- ➤ Lower limit to sextupole strength reduction
 → spiral step x_{step} becomes too small, leads to beam losses

Experiment: Fourier transformation

Minimize horizontal beam size at extraction

Emittance exchange (EmEx) for spill smoothing

R. Singh, February 17th, 2022

Emittance exchange (EmEx) for spill smoothing

- Did not touch the extraction settings
- Extraction starts a bit later due to smaller horizontal beam size
- Spill quality is better with EmEx: Weighted DF increases from 0.49 to 0.64
- The support of SIS-18 colleagues acknowledged!

Transit time dependent external tune modulation

- Modulate tune with a higher frequency 3-5 times the cut-off frequency and amplitude 5-15 times the inherent ripple (1-3% of extraction tune ramp)
- This high frequency A_{stable} modulation does not allow lower frequency inherent fluctuations to "feed" on particles
- ➤ Modulation frequency high enough such that it is suppressed by transit time spread → but not too high

R. Singh et al.: '*Reducing Fluctuations in Slow-Extraction Beam Spill Using Transit-Time-Dependent Tune Modulation*', Phys. Rev. Applied 13, 044076 (2020)

R. Singh, February 17th, 2022

GSI

Transit time dependent external tune modulation

R. Singh, February 17th, 2022

Tune modulation with user/production beam

- **Beam :** 1.58 GeV/u Ag⁴⁵⁺ (HADES experiment)
- The transit time spread evolves (increases from low to high) based on tune ramp, <u>apply a frequency</u> <u>sweep correlated to transit time spread</u>
- Amplitude not yet optimized (150 mA applied i.e. 15 times of inherent ripple amplitude at 600 Hz)

Bunched beam extraction

Histogram of time between successive particle arrival

Cumulative distribution of the spills

- Beam : Bi⁶⁸⁺ at 300 MeV/u, quad. scan, bunched beam (detector : Scintillator)
- For some experiments, bunched beam spill can be advantageous over a "Poisson" spill if the RF frequency is matched with the average extraction rate.

T. Milosic et al., sub-ns single particle spill characterization for slow extraction", doi:10.18429/JACoW-IBIC2021-WEPP28, IBIC 2021

R. Singh, February 17th, 2022

GSI

Recent slow extraction activities at GSI

Overview of activities \rightarrow Talk by D. Ondreka at recent slow extraction workshop.

- → A method to identify/verify the septum voltage and problems with sparking was discussed.
- \rightarrow Challenges for SIS100 extraction presented.

https://conference-indico.kek.jp/event/163/contributions/3142/

Installation of Very High Frequency (VHF) : Refurbished Einzel resonator for SIS-18, increase the effective fill time of SIS while using synchrotron motion for spill smoothing

Simulations by S. Sorge et al. show that it might help in comparison to unbunched beam,

- \rightarrow creates macrostructures due to synchro-betatron resonances.
- → Generally, a regime or relation is found between transition and synchrotron tune where bunching helps

https://conference-indico.kek.jp/event/163/contributions/3154/

R. Steinhagen et al., Macrospill feedback was developed and tested using experimental detectors. Software aspects were also discussed.

https://conference-indico.kek.jp/event/163/contributions/3155/

- ➢ We are utilizing single particle counting plastic scintillators+PMTs. The data is analysed in counting mode (ABLAX) and particle interval mode (TDC)
- Inherent smoothing mechanisms of the spill have been investigated in detail and now regularly used in the machine operation
- Promising pilot study on utilizing transverse emittance exchange was recently performed
- External tune modulation in dependence to transit time distribution was realized and showed useful improvements for machine users
- Recent results from TDC show, bunched beam extraction is an attractive option for low extraction rate experiments at GSI
- Most investigations are with quad driven extraction and knock-out investigations pending
 Acknowledgements

A. Stafiniak, H. Welker (PSU), D. Ondreka, J. Stadlmann, P. Spiller (SIS)