
Horizontal beam response for the slow extraction at HIT's synchrotron

I.FAST-REX Collaboration Meeting

Cristopher Cortés Heidelberg Ion-Beam Therapy Centre

Table of Contents

Introduction **HIT Facility** Motivation

Emittance blow-up RF-KO slow extraction Excitation spectrum at HIT

Experiment BTF Measurement

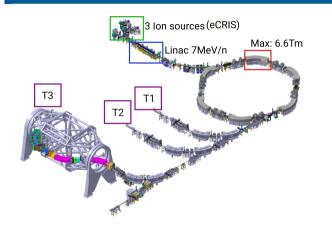
Results

Summary

Table of Contents

Introduction HIT Facility Motivation

Emittance blow-up RF-KO slow extraction Excitation spectrum at HIT


Experiment BTF Measurement

Results

Summary

Heidelberg Ion-Beam Therapy-Center

Parameter	Value
Ion species	p ⁺ , He ²⁺ , C ⁶⁺ , O ⁸⁺
Depth range	2 - 30 cm
Beam size	3.4 - 32.4 mm
Max. dose	$2~{ m Gy~min^{-1}~I^{-1}}$
Irradiation field	$20{ imes}20~\text{cm}^2$
Intensity	10 ⁶ -10 ⁹ part./s

Table: Beam characteristics at the HIT facility.

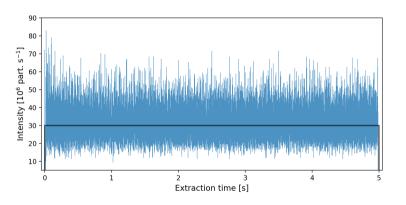


Figure: Typical spill at HIT.

C⁶⁺ Beam

 $E_{kin} = 251.24 \text{ MeV/u}$

$$R = rac{\mathsf{Mean}^2}{\mathsf{Mean}^2 + \sigma^2}$$

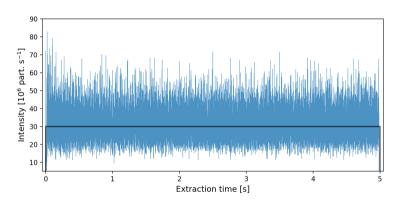


Figure: Typical spill at HIT.

$$R = rac{ extsf{Mean}^2}{ extsf{Mean}^2 + \sigma^2}$$

$$R=94.5\%$$

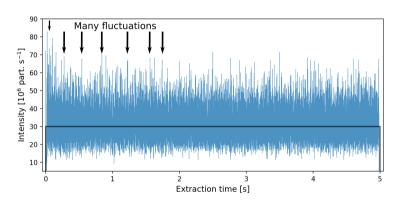


Figure: Typical spill at HIT.

$$R = rac{\mathsf{Mean}^2}{\mathsf{Mean}^2 + \sigma^2}$$

$$R=94.5\%$$

Motivation

Questions

- Can we suppress the fluctuations?
- Can we improve the spill quality?

Motivation

Faster dose delivery

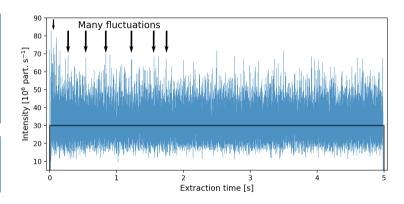
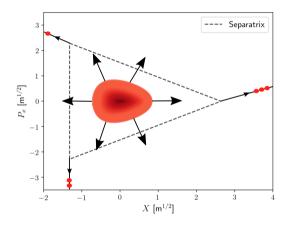


Figure: Typical spill at HIT.

Table of Contents

ntroduction HIT Facility Motivation

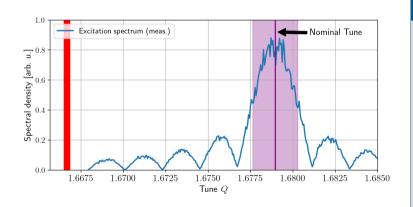
Emittance blow-up RF-KO slow extraction Excitation spectrum at HIT


Experiment BTF Measurement

Results

Summary

RF-KO slow extraction


Betatron resonance

Betatron frequency

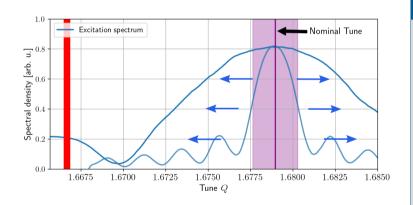
$$f_eta = (n \pm q) \cdot f_{\mathsf{rev}}$$

- Fixed linear ion-optics
- Fixed separatrix

Excitation spectrum at HIT

Betatron resonance

Betatron frequency

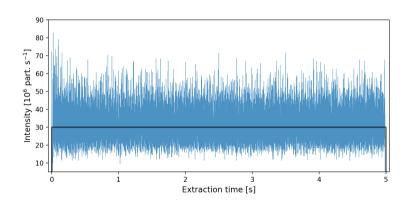

$$f_eta = (n \pm q) \cdot f_{\mathsf{rev}}$$

Chromatic tune spread

$$\frac{\Delta Q}{Q} = \xi \frac{\Delta p}{p}$$

Excitation spectrum at HIT

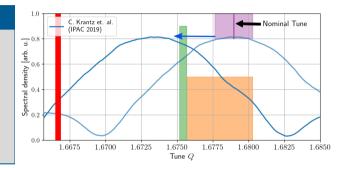
Betatron resonance


Betatron frequency

$$f_eta = (n \pm q) \cdot f_{\mathsf{rev}}$$

Chromatic tune spread

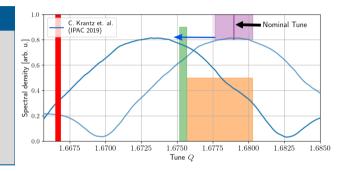
$$\frac{\Delta Q}{Q} = \xi \frac{\Delta p}{p}$$


$$R = rac{\mathsf{Mean}^2}{\mathsf{Mean}^2 + \sigma^2}$$

$$R = 94.5\%$$

HIT's Approach

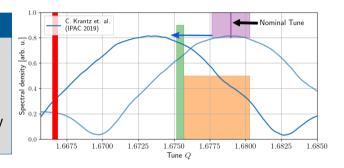
Questions


- Is it a good idea to use the tune distribution as reference for the excitation spectrum?
- Can we measure the tune distribution?
- Can we calculate the tune distribution?

HIT's Approach

Questions

- Is it a good idea to use the tune distribution as reference for the excitation spectrum? -> Probably
- Can we measure the tune distribution? -> Yes! (Indirectly)
- Can we calculate the tune distribution? -> Yes!


HIT's Approach

Questions

Can we measure the tune distribution? ->

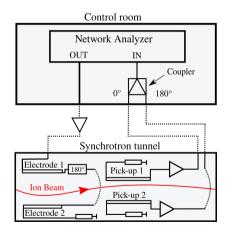
Beam Transfer Function

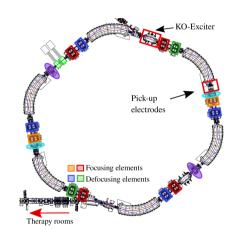
 Can we calculate the tune distribution? -> Perturbation theory with Vlasov-Eq.

Table of Contents

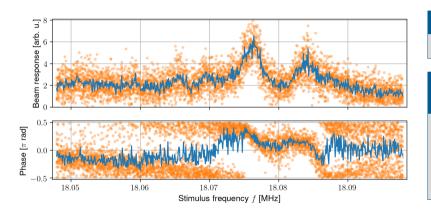
Introduction HIT Facility Motivation

Emittance blow-up RF-KO slow extraction Excitation spectrum at HIT


Experiment BTF Measurement


Results

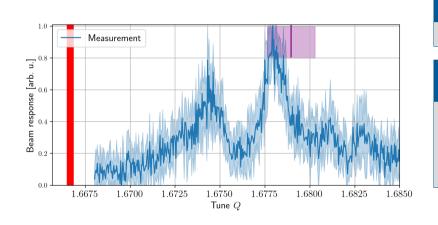
Summary


BTF experimental setup

BTF Measurement

Carbon-ion

 $E_{kin} = 124.25 \text{ MeV/u}$

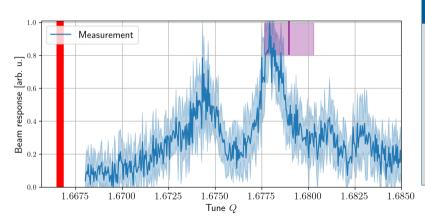

Extraction conditions

- Sextupoles at extraction conditions
- Coasting beam
- Weak excitation

Figure: BTF at extraction conditions at the lower 9th betatron band. Orange: Raw data. Blue: Mean value.

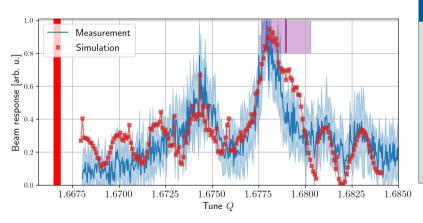
BTF Measurement

Carbon-ion

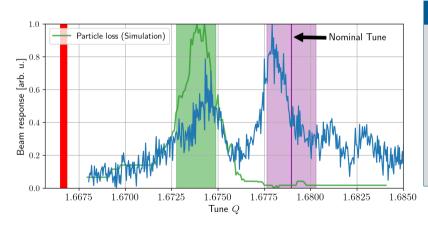

 $E_{\rm kin}$ = 124.25 MeV/u

Extraction conditions

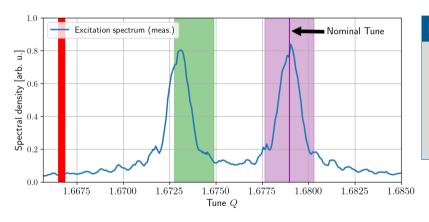
- Sextupoles at extraction conditions
- Coasting beam
- Weak excitation


BTF Simulation

- MADX tracking module
- 5 · 10⁴ particles
- 2600 turns (~1ms)
- 200 tune steps
- Approx. 1TB of data
- 1 week of computing time


BTF Simulation and Measurement

- MADX tracking module
- 5 · 10⁴ particles
- 2600 turns (~1ms)
- 200 tune steps
- Approx. 1TB of data
- 1 week of computing time


New excitation spectrum

- MADX tracking module
- 5 · 10⁴ particles
- 2600 turns (~1ms)
- 200 tune steps
- Approx. 1TB of data
- 1 week of computing time

New excitation spectrum

Excitation spectrum

- Two peaks
- Narrow bands (less than 5kHz)
- Central frequencies are ~ 10kHz appart of each other

Spill with new excitation spectrum

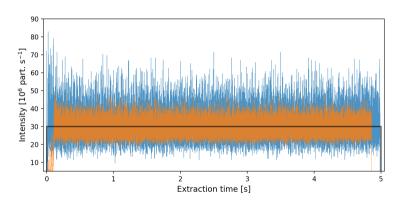


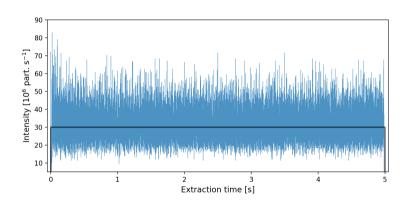
Figure: Spill with new excitation spectrum.

$$R = rac{\mathsf{Mean}^2}{\mathsf{Mean}^2 + \sigma^2}$$

$$R = 98.1\%$$

Table of Contents

ntroduction HIT Facility Motivation


Emittance blow-up RF-KO slow extraction Excitation spectrum at HIT

Experiment BTF Measurement

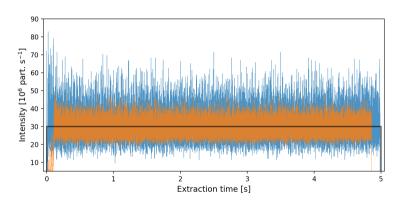
Results

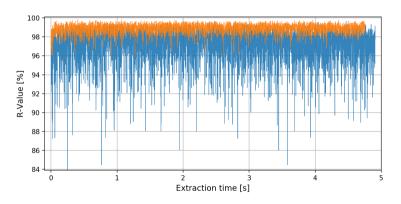
Summary

$$R = \frac{\mathsf{Mean}^2}{\mathsf{Mean}^2 + \sigma^2}$$

$$R = 94.5\%$$

Spill with new excitation spectrum

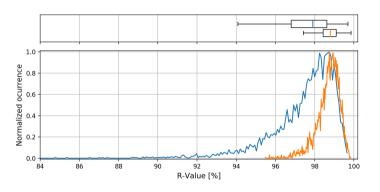



Figure: Spill with new excitation spectrum.

$$R = rac{\mathsf{Mean}^2}{\mathsf{Mean}^2 + \sigma^2}$$

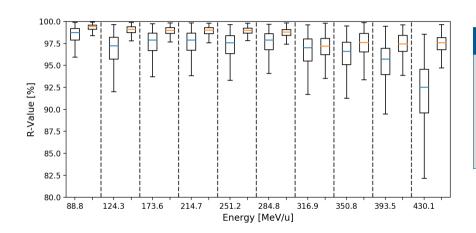
$$R = 98.1\%$$

Comparison of spill quality



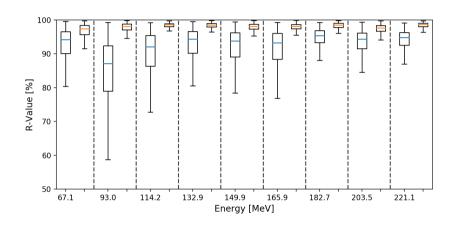
$$R = \frac{\mathrm{Mean}^2}{\mathrm{Mean}^2 + \sigma^2}$$

Figure: Spill quality through extraction in 1ms windows.


Comparison of spill quality

$$R = rac{\mathsf{Mean}^2}{\mathsf{Mean}^2 + \sigma^2}$$

Figure: Histogram of R-Value over 5 s extraction.


Improvement of spill quality: Carbon-ion

$$R = rac{\mathsf{Mean}^2}{\mathsf{Mean}^2 + \sigma^2}$$

Improvement of the spill-quality: Protons

$$R = rac{ extsf{Mean}^2}{ extsf{Mean}^2 + \sigma^2}$$

Table of Contents

ntroduction HIT Facility Motivation

Emittance blow-up RF-KO slow extraction Excitation spectrum at HIT

Experiment
BTF Measurement

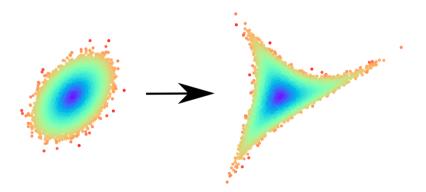
Results

Summary

Summary

- Improvement of spill quality from \sim 90% to \sim 99%
- Improvement for all energies, ion species and intensity configurations
- Strong suppresion of fluctuations in the extracted particle yields
- Take the tune distribution as reference for the excitation signal
- Tune distribution is given by amplitude-detuning of the non-linear dynamics of the system

$$Q = \frac{1}{2\pi} \frac{\partial \mathcal{H}}{\partial J_x}$$


 J_x : Action \propto Amplitude in phase-space

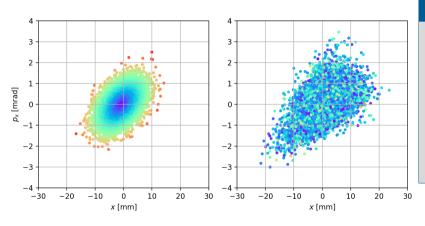
and the perturbed distribution in phase-space.

Phase-space

Thank you for your attention.

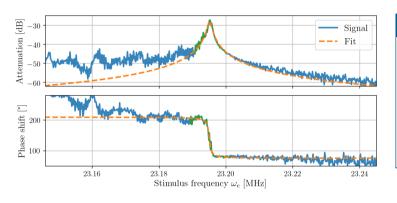
Extra-slides

Schottky noise signals and BTF


With a coasting beam and no sextupoles:

Parameter	Design value	Measured value
Q_{x}	1.67895	$1.67952 \pm 5 imes 10^{-5}$
Q_y	1.755	$1.720 \pm 6 imes 10^{-3}$
η	0.47657	$\textbf{0.44} \pm \textbf{0.02}$
ξ	-0.655	$\textbf{-0.72} \pm 0.06$
σ_{δ}	-	$1.2 imes 10^{-3}$ (FWHM)
$\omega_{ extsf{S}}$	843.56 Hz	(810 \pm 21) Hz

Table: Measured ion-optical parameters with a carbon ion beam C^{6+} with $E_{kin} = 125.25$ MeV/n.


BTF Simulation

- MADX tracking module
- 5 · 10⁴ particles
- 2600 turns (~1ms)
- 200 tune steps
- Approx. 1TB of data
- 1 week of computing time

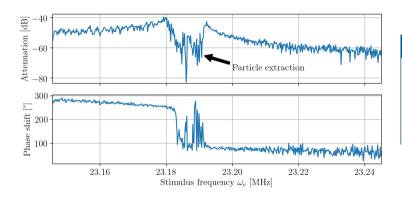
BTF Measurement

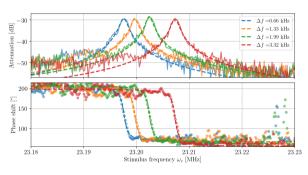
Harmonic oscillator

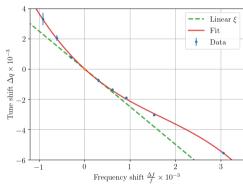
$$A = \frac{f_0/m}{\sqrt{(\omega_0^2 - \omega_e^2)^2 + (\Lambda \omega_e)^2}}$$
$$\phi = \operatorname{arccot}\left(\frac{\omega_0^2 - \omega_e^2}{\Lambda \omega_e}\right)$$

Figure: BTF of a C6+ coasting beam

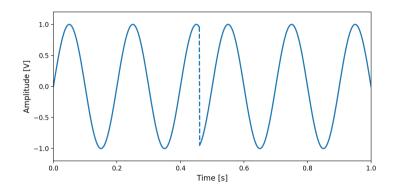
BTF Measurement




Figure: BTF with sextupolar fields


Extraction conditions

- Sextupoles at extraction conditions
- Coasting beam
- Same excitation as before



Chromaticity

Signal generation

Pseudo-Random BPSK

$$V(t) = V_0 \sin{(2\pi f_0 + \phi_{ ext{BPSK}})}$$

$$\phi_{ ext{BPSK}} = \pi (n-1), \quad n = 0, 1$$

 ϕ_{BPSK} : Binary **Phase** Shift Keying

