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Quantum fluctuations in the Glasma

Color Glass Initial sQGP - Hadron
Condensates  Singularity perfect fluid Gas

t

Two kinds of important quantum fluctuations:

a) Before the collision: p =0 modes —factorized into
the wavefunction (Francois’ talk)

a) After the collision p, # 0; hold the key to early time dynamics



From Glasma to Plasma
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Quantum fluctuations: power counting

") Dusling,Gelis,RV, arXiv1106.3297 (2011)
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Higher orders:
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Spectrum of initial fluctuations
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Initial spectrum of fluctuations
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W’s determined from solution of JIMWLK equation —recent progress!

Rummukainen, Weigert (2003)
Dumitru,Jalilian-Marian,Lappi,Schenke,RV, arXiv:1108.4764
lancu,Triantafyllopolous, arXiv:1112.1104



Computing small fluctuations in the Glasma

1) Construct t-independent inner product on initial Cauchy surface at t=0*

2) Solve small fluctuation equations in Glasma background at t=0*

3) Determine physical solutions (eureu) =0
Gaussian random variable N
(cukeyy) = 2m0 (v — p)ok
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4) Well defined algorithm — numerical computations feasible



Hydrodynamics from quantum fluctuations

Previously, in inflationary context:

Dusling,Epelbaum,Gelis,RV (2011) Son, Khlebnikov+Tkachev (1996)
“Toy” example: scalar (O theory Gaussian random variable <f’1/k-f1,u,£> 0
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Satisfies the equation

=07 + V(o)X = A7 Xk

[ These quantum modes satisfy the properties of high lying quantum
eigenstates of classically chaotic systems conjectured by Berry

and argued by Srednicki (and others) as essential for thermalization of a
quantum fluid

J For a scalar theory, phase decoherence of trajectories appears to
lead to hydrodynamic behavior (see talk by Thomas Epelbaum)



Some open questions

** What is the relation of our power counting to the 2Pl framework of
Berges et al. (talk by Yoshitaka Hatta) ? Can one include “sub-
leading” contributions by preserving the formal structure of

the spectrum of fluctuations

** When does this framework break down? Is there a smooth matching
to kinetic theory?



