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Multiple scatterings and gluon recombination e

e Main difficulty: How to treat collisions involving a large
number of partons?



Multiple scatterings and gluon recombination Frassels E<le

° : one parton in each projectile interact
o large Q2, no small-x effects
> single parton distributions + DGLAP evolution
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Multiple scatterings and gluon recombination e

° : multiparton processes become crucial
> gluon recombinations are important (saturation)
> multi-parton distributions + JIMWLK evolution
> new techniques are required (Color Glass Condensate):

__dp
L=-ZF"+J3-A

(gluons only, field A for k™ < A, classical source J for k™ > A)



Color Glass Condensate = effective theory of small x gluons Frassels E<le

[McLerran, Venugopalan (1994), Jalilian-Marian, Kovner, Leonidoy,
Weigert (1997), lancu, Leonidov, McLerran (2001)]

e The fast partons (k™ > A™) are frozen by time dilation
> described as on the light-cone :

JH =5 p(x, K1) (0<x~ <1/A™) J

e The color sources p are random, and described by a
probability distribution W 5+ [p]

e Slow partons (k™ < A*) may evolve during the collision
> treated as standard gauge fields
> eikonal coupling to the current J* : J A"
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Renormalization group evolution, JIMWLK equation Frasois Geli
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e The cutoff between the sources and the fields is not
physical, and should not enter in observables

e Loop corrections contain logs of the cutoff

e These logs can be cancelled by letting the distribution of
the sources depend on the cutoff

oW [p] > .
A———=H|p,— | W JIMWLK equation
A o5 Pl ( q )
e Originally, proven in situations involving only one nucleus
What about nucleus-nucleus collisions?
Do the logs mix the sources of the two nuclei?
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e CGC effective theory with
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e Expansion in g2 in the saturated regime:

wv Qg 2 4
(T >Ng_2 [CO+Clg +C09 +---
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Leading Order

T =3

trees

Energy-momentum tensor at LO :

1
o' = 29" 770 — T,

[D, F] =37 +3Y , lim AM(t,X)=0

li
t——oc0

Yang—Mills equation
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Next to Leading Order [FG, Venugopalan (2006)]

Th=0

trees

Energy-momentum tensor at NLO :

w- 3], o, ¢ | e, e

u,vex urez

X = initial Cauchy surface , T ~ 5/8Ainit

e does not include virtual quarks loops
e g, and « are calculable analytically



Leading Logs [FG, Lappi, Venugopalan (2008)]

Logs of AT and A~

%”k [ax T, [ T],, + J [aT], =

= In(A") Hy+1In (A7) 3, + terms w/o logs

1,2 = JIIMWLK Hamiltonian

¢ Roughly speaking, the mapping is:

lac T, — sz)ﬁ _ul =xh
u (UL —x1)

e No mixing between the logs of AT and A~

e Ensures the factorizability of these logs into
JIMWLK-evolved distributions W [p; ]

5 [Qx 1) —QuL)],, VB
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Factorization of the Leading Logs of 1/x i

e One can factorize all the powers of s log(1/x1,2)
Energy-momentum tensor at Leading Log accuracy

(T = | PP DR.] Walo] Wo[o.] T o2
S—

for fixed py,2

e The factor T " under the integral does not depend on y:
the rapidity dependence comes entirely from the
distributions W1
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Multi-point correlations at Leading Log

e The previous factorization can be extended to multi-point
correlations :

(T () TR ()

Llog

- J [Dp, Dp,] Walp,] Walp,] T8V (xq) - - T 0 (o)

e Note: at Leading Log accuracy, all the rapidity correlations
come from the evolution of the distributions W [p4 5]

> they are a property of the pre-collision initial state
e Long range (Ay ~ «g 1) correlations in rapidity

e Caveat : for this formula to be true, all the separations
(xi — X;j)? must be space-like



Energy momentum tensor at LO
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Energy momentum tensor at LO

TH for longitudinal E and B
T (1 =0") =diag(e, €, €, —¢)

> far from ideal hydrodynamics

n-l
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Weibel instabilities for small perturbations Frassels E<le

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold,
Lenaghan, Moore (2003), Rebhan, Romatschke, Strickland (2005),
Arnold, Lenaghan, Moore, Yaffe (2005), Romatschke, Rebhan
(2006),...]
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Weibel instabilities for small perturbations Frassels E<le

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold,
Lenaghan, Moore (2003), Rebhan, Romatschke, Strickland (2005),
Arnold, Lenaghan, Moore, Yaffe (2005), Romatschke, Rebhan
(2006),...]
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o Some of the field fluctuations ax diverge like exp \/ut
when T — o0

e Some components of T*Y have secular divergences when
evaluated at fixed loop order

e When a, ~ A ~ g1, the power counting breaks down and
additional contributions must be resummed :

g eVFT~1 at Tmax ~ uil |092(gil)
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Improved power counting

Loop ~ g2

Tu "‘e\/ﬁ

T™(X)

I,(u,v) v

e 1loop: (gev¥F™)?
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Improved power counting rises e

Loop~g? T, ~eV*?® J

T™(X)

e 1loop: (gev¥F™)?

e 2 disconnected loops :
(gevFT)*



Frangois Gelis

Improved power counting

Loop~g? T, ~eV*?® J

T™(X)

e 1loop: (gev¥F™)?

e 2 disconnected loops :
(gevFT)*

I 3(u,v,w) e 2 nested loops :
g(gev™™)® > subleading

Leading terms at Tmax
¢ All disjoint loops to all orders
> exponentiation of the 1-loop result




Resummation of the leading secular terms

THY —exp % J J[aknr]u[amv +j [Ty
k

resummed
U»Vez%/_/ uex
S(u,v)

T2V [Ainit]
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Resummation of the leading secular terms

Tr:;,u-vmmed: exp [% J J [ak T]u [aﬁ T]v +J [(XT]U‘| TL%V [Ainit]
k

u,vez%/_/ uex
G(u,v)

= J[Dx] exp l—% JX(U)Sl(u»V)x(V)]TJ;V[Am +X + o

u,vex

e The evolution remains classical, but we must average over
a Gaussian ensemble of initial conditions

e Note : the constant shift « can be absorbed into a
redefinition of Ainit
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