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Initial linear stage

During Inflation the Universe is “empty”. But small fluctuations
obey

ük + [k2 + m2
eff(τ )] uk = 0

and it is not possible to keep fluctuations in vacuum
if meff is time dependent



Initial linear stage

During Inflation the Universe is “empty”. But small fluctuations
obey

ük + [k2 + m2
eff(τ )] uk = 0

and it is not possible to keep fluctuations in vacuum
if meff is time dependent

The source for meff = meff(τ ) is time-dependence of classical
backgrounds:

Expansion of space-time, a(τ )

Evolution of the inflaton field, φ(τ )



Coupling to the inflaton

Scalar X

m2
eff = m2

X + g2φ2(t)

Fermion ψ

meff = mψ + gφ(t)
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Coupling to the inflaton

Scalar X

m2
eff = m2

X + g2φ2(t)

Fermion ψ

meff = mψ + gφ(t)

ük +
�
k2 + m2

eff

�
uk = 0

Relevant parameter:

g2 → q ≡
g2φ2

4m2
φ

Note: q can be very large since

φ2

m2
φ

≈ 1012

Kofman, Linde & Starobinsky (94)
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Scalar X
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Bose stimulation.
Occupation numbers grow,

n = eµt

Explosive decay of the inflaton

Pauli blocking.
Occupation numbers

n < 1

Particles are massless at
φ(t) = −mψ/g
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Bose versus Fermi :

Scalar X

m2
eff = m2

X + g2φ2(t)

Fermion ψ

meff = mψ + gφ(t)

Bose stimulation.
Occupation numbers grow,

n = eµt

Explosive decay of the inflaton

⇓

Quantum to classical transition
Khlebnikov & I.T. (96)

Non-thermal phase transitions
Kofman, Linde & Starobinsky (96)

I.T. (96)

Pauli blocking.
Occupation numbers

n < 1

Particles are massless at
φ(t) = −mψ/g

⇓
Intensive creation of superheavy

fermions
Giudice, Peloso, Riotto, & I. T. (99)

Trans-Planckian features in CMB
Chung, Kolb, Riotto, & I. T. (00)



Matter creation: Bose versus Fermi

Red lines: fraction of produced Bosons
Blue lines: fraction of produced Fermions

φ ∝ sin(mt)

Particle production
at the end of inflation
in the model with
inflaton potential

V (φ) = m2φ2



⇒



When particle production ends?

Maximum filed
variance in the
model with inflaton
potential

V (φ) = m2φ2

and interaction

g2X2φ2

.

Dotted lines: linear problem.
Solid lines: Hartree approximation.



When particle production ends?

Maximum filed
variance in the
model with inflaton
potential

V (φ) = m2φ2

and interaction

g2X2φ2

.

Solid lines: Hartree approximation.
Stars: complete non-linear problem.



Non-thermal Phase Transitions

0

100

0

100

t=290

0

100

0

100

t=310

String formation

V (φ) = λ(φ2
1+φ2

2−v2)2

v ∼ 1016 GeV

First order phase transition

V (φ, X) = λ(φ2 − v2)2 + g2φ2X2

g2/λ = 200

Khlebnikov, Kofman, Linde & I.T. (98)

↑
Bubble of new phase



Thermalization after Inflation

Questions:

How system approaches equilibrium?

When? What is thermalization temperature?

Are of general interest and important for practical applications.
It influences:

Inflationary predictions

Baryogenesis

Abundance of gravitino and dark matter relics

Primordial fluctuations



Approach:

Lattice simulations
(as a guidance)

Kinetic theory
(weak wave turbulence)

Various quantities can be
measured as functions of time:

Zero mode, φ0 = �φ�
Variance, �φ2� - φ2

0
Particle number,
nk = �a†(k)a(k)�
Correlators,
�aa�, �a†a†aa�, �π2�, ...

Compare to lattice results and
extrapolate.

Felder & Kofman (2001)

Micha & I.T. (2004)
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Consider simplest λϕ4 model.

In conformal frame, φ = ϕ/a, and rescaled coordinates,
xµ →

√
λϕ(0) xµ, the equation of motion takes very simple

form
�φ + φ3 = 0
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Turbulence

Variety of turbulent behavior/regimes/definitions:

Weak wave turbulence

Strong turbulence

Driven turbulence

Decaying (free) turbulence -1
0ϕk 1 10
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Kolmogorov Turbulence

We have a source of energy (or particles) located at k = ki and
a sink located at k = kf . Energy conserves

∂t(ωk nk) + ∇k · jk = 0,

In statiory state energy flux is constant through any surface

dE

dt
= const

Pumped energy should grow linearly with
time

E = const · t



Three major epochs of reheating

V (χ, X) =
1

4
φ4 +

g

2
φ2χ2 +

h

4
χ4

η
10

2
10

3
10

-3

10
-2

10
-1

η~

η~
χρ

h=10g
h=100g

free turbulence

driven turbulence

parametric resonance

– Parametric resonance
– Driven turbulence
– Free turbulence

At large h and/or g the para-
metric resonance stops early.

Micha & I.T. (2004)



Three major epochs of reheating

V (χ, X) =
1
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– Parametric resonance
– Driven turbulence
– Free turbulence

But distributions evolve faster at
late times.

Micha & I.T. (2004)



Kolmogorov Turbulence

We have a source of energy (or particles) located at k = ki and
a sink located at k = kf . Energy conserves

∂t(ωk nk) + ∇k · jk = 0,

or
ωkIk[n] + ∇k · jk = 0.

In statiory state energy flux is constant through any surface

jk = C k−d+1+δ

∇k · jk = δC k−d+δ

In stationary state δ → 0 and

Ik[n] → k−(d+α) ≡ k−ν

where ω(k) = kα



Kinetic Theory

Kinetic equation ṅk = Ik[n]
Collision integral Ik[n] =

�
dΩ(k, qi) F (k, qi)

Example:

q3q2

q1 k

λ

dΩ(k, qi) =
(2π)4|M |2

2ωk
δ4(kµ, qiµ)

3�

i=1

d3qi

2ωi(2π)3

For classical waves (n � 1)
F (k, qi) = (nk+nq1)nq2nq3−nknq1(nq2+nq3)

In full quantum problem
F (k, qi) = (1 + nk) (1 + nq1)nq2nq3 − nknq1(1 + nq2) (1 + nq3)



Scaling

Collision integral Ik[n] =
�

dΩ(k, qi) F (k, qi)

Rescaling of n:
F (ζn) = ζm−1F (n) ,

where m is the number of particles which participate in the
process.

Rescaling of momenta:

dΩ(ξk, ξqi) = ξµ dΩ(k, qi) ,

where µ depends upon theory and number of dimensions,
e.g. µ = 1 for a relativistic theory with dimensionless couplings.



n(q) ∝ q−s

F (ξk, ξqi) = ξ−s (m−1) F (k, qi) .

Iξk[n] = ξ−νIk[n] ,

ν = s (m − 1) − µ

ν = d + α

s =
d + α + µ

m − 1
s = 5

3

s = 3
2
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Self-similar evolution

k
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5x10

=3600τ- 
=5100τ- 
=7000τ- 
=10000τ- 

kn4k
η = 10000
η = 7000
η = 5100
η = 3600 Particle numbers on the lattice

in the regime of free turbulence
evolve self-similarly

n(k, η) = τ−q n0(kτ−p)

with p = 1
5

Theory:

Free turbulence

p = 1
7 for 4-particle

interactions

p = 1
5 for 3-particle

interactions

Thermalization:
Position of the peak moves as

k(τ ) = k0 τp

Thermalization will occur when
k4

max ∼ T 4 ∼ (initial energy).
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k

p = 1/(2m − 1)

s = d − m/(m − 1)

v = 2/(2m − 1)

z = 2/(d(m − 1) − m)

d = 3 m = 3



λφ4

q3q2

q1 k



λφ4

q2

q1

k np

ωp
→

np

ωp
+ (2π)3δ(3)(&p)φ̄2

0



m = 4



Test of kinetic description
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Collision integrals and ṅ(k)
at η = 5000.

I(3)
k agrees with ṅ(k) to the

left of the vertical dashed
line

Red line: 3-particle collision integral, I
(3)
k

Blue line: 4-particle collision integral, I
(4)
k
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