Preheating and Thermalization in the Early Universe

I. Tkachev

Institute for Nuclear Research, Moscow
14 December 2011, Heidelberg

Outline

(1) Introduction
(2) Overview of Preheating
(3) Turbulent equilibration

- Turbulence in the simplest $\lambda \phi^{4}$ model
- Kinetic theory of the turbulence
- Role of zero-mode
- Driven and decaying turbulence during reheating
(9) Thermalization
- "Inflation", a period of accelerated universe expansion, solves successfully a number of problems of classical cosmology. (Universe age, flatness, homogeneity, etc.)
- It has unanticipated amazing predictive power:

CMBR anisotropy 379,000 years after

$$
\Downarrow
$$

Large-scale structure 13.7 billions years after

During Inflation the Universe is empty, in a vacuum state. How vacuum was turned into radiation?

Particle physicist

Cosmologist

Chaotic Inflation

Equation of motion

$$
\ddot{\varphi}+3 H \dot{\varphi}+\frac{d V}{d \varphi}=0
$$

If $H \gg m$ the field rolls down slowly

$\varphi>M_{\mathrm{Pl}} \quad$ Inflation
$\varphi<M_{\mathrm{PI}}$
Reheating

Initial linear stage

During Inflation the Universe is "empty". But small fluctuations obey

$$
\ddot{u}_{k}+\left[k^{2}+m_{\mathrm{eff}}^{2}(\tau)\right] u_{k}=0
$$

and it is not possible to keep fluctuations in vacuum if $m_{\text {eff }}$ is time dependent

Initial linear stage

During Inflation the Universe is "empty". But small fluctuations obey

$$
\ddot{u}_{k}+\left[k^{2}+m_{\text {eff }}^{2}(\tau)\right] u_{k}=0
$$

and it is not possible to keep fluctuations in vacuum if $m_{\text {eff }}$ is time dependent

The source for $m_{\text {eff }}=m_{\text {eff }}(\tau)$ is time-dependence of classical backgrounds:

- Expansion of space-time, $a(\tau)$
- Evolution of the inflaton field, $\phi(\tau)$

Coupling to the inflaton

Scalar X
$m_{\text {eff }}^{2}=m_{X}^{2}+g^{2} \phi^{2}(t) \quad m_{\text {eff }}=m_{\psi}+g \phi(t)$

$$
\ddot{u}_{k}+\left[k^{2}+m_{\text {eff }}^{2}\right] u_{k}=0
$$

Coupling to the inflaton

Scalar X
Fermion ψ
$m_{\text {eff }}^{2}=m_{X}^{2}+g^{2} \phi^{2}(t) \quad m_{\text {eff }}=m_{\psi}+g \phi(t)$

$$
\ddot{u}_{k}+\left[k^{2}+m_{\text {eff }}^{2}\right] u_{k}=0
$$

Relevant parameter:

$$
g^{2} \rightarrow q \equiv \frac{g^{2} \phi^{2}}{4 m_{\phi}^{2}}
$$

Note: quan be very large since

$$
\frac{\phi^{2}}{m_{\phi}^{2}} \approx 10^{12}
$$

Kofman, Linde \& Starobinsky (94)

Scalar X
$m_{\text {eff }}^{2}=m_{X}^{2}+g^{2} \phi^{2}(t)$

Fermion ψ

$m_{\text {eff }}=m_{\psi}+g \phi(t)$

Bose stimulation.
Occupation numbers grow,

$$
n=e^{\mu t}
$$

Pauli blocking.
Occupation numbers

$$
n<1
$$

Scalar X
$m_{\text {eff }}^{2}=m_{X}^{2}+g^{2} \phi^{2}(t)$
Fermion ψ
$m_{\text {eff }}=m_{\psi}+g \phi(t)$

Bose stimulation.
Occupation numbers grow,

$$
n=e^{\mu t}
$$

Explosive decay of the inflaton

Pauli blocking.
Occupation numbers

$$
n<1
$$

Particles are massless at

$$
\phi(t)=-m_{\psi} / g
$$

Scalar X
$m_{\text {eff }}^{2}=m_{X}^{2}+g^{2} \phi^{2}(t)$

Bose stimulation.
Occupation numbers grow,

$$
n=e^{\mu t}
$$

Explosive decay of the inflaton

Fermion ψ
$m_{\text {eff }}=m_{\psi}+g \phi(t)$

Pauli blocking.

Occupation numbers

$$
n<1
$$

Particles are massless at

$$
\phi(t)=-m_{\psi} / g
$$

Scalar X
$m_{\text {eff }}^{2}=m_{X}^{2}+g^{2} \phi^{2}(t)$

Bose stimulation.
Occupation numbers grow,

$$
n=e^{\mu t}
$$

Explosive decay of the inflaton

Quantum to classical transition Khlebnikov \& I.T. (96)
Non-thermal phase transitions
Kofman, Linde \& Starobinsky (96)
I.T. (96)

Fermion ψ
$m_{\text {eff }}=m_{\psi}+g \phi(t)$

Pauli blocking.
Occupation numbers

$$
n<1
$$

Particles are massless at

$$
\phi(t)=-m_{\psi} / g
$$

\Downarrow
Intensive creation of superheavy fermions
Giudice, Peloso, Riotto, \& I. T. (99)
Trans-Planckian features in CMB
Chung, Kolb, Riotto, \& I. T. (00)

Red lines: fraction of produced Bosons
Blue lines: fraction of produced Fermions

$$
\phi \propto \sin (m t)
$$

Particle production at the end of inflation in the model with inflaton potential

$$
V(\phi)=m^{2} \phi^{2}
$$

Matter creation: end of linear stage

In the linear approximation in Minkowski space-time occupation numbers grow exponentially without limit.

To solve the problem one needs to understand the non-linear dynamics.

- At large occupation numbers it is possible to map quantum evolution into classical: quantum density matrix \Rightarrow classical density matrix

Khlebnikov, I.T. (1996)

- This allows numerical modelling on the lattice
- starting from vacuum
- through "parametric resonance", then through preheating
- and down to physical effects in question

When particle production ends?

Maximum filed variance in the model with inflaton potential

$$
V(\phi)=m^{2} \phi^{2}
$$

and interaction

$$
g^{2} X^{2} \phi^{2}
$$

Dotted lines: linear problem.
Solid lines: Hartree approximation.

When particle production ends?

Maximum filed variance in the model with inflaton potential

$$
V(\phi)=m^{2} \phi^{2}
$$

and interaction

$$
g^{2} X^{2} \phi^{2}
$$

Solid lines: Hartree approximation.
Stars: complete non-linear problem.

String formation

$$
\begin{aligned}
& V(\phi)=\lambda\left(\phi_{1}^{2}+\phi_{2}^{2}-v^{2}\right)^{2} \\
& v \sim 10^{16} \mathrm{GeV}
\end{aligned}
$$

First order phase transition

$$
\begin{aligned}
& V(\phi, X)=\lambda\left(\phi^{2}-v^{2}\right)^{2}+g^{2} \phi^{2} X^{2} \\
& g^{2} / \lambda=200
\end{aligned}
$$

Questions:

- How system approaches equilibrium?
- When? What is thermalization temperature?

Are of general interest and important for practical applications. It influences:

- Inflationary predictions
- Baryogenesis
- Abundance of gravitino and dark matter relics
- Primordial fluctuations

Approach:

- Lattice simulations (as a guidance)

Various quantities can be measured as functions of time:

- Zero mode, $\phi_{0}=\langle\phi\rangle$
- Variance, $\left\langle\phi^{2}\right\rangle-\phi_{0}^{2}$
- Particle number,

$$
n_{k}=\left\langle a^{\dagger}(k) a(k)\right\rangle
$$

- Correlators,

$$
\langle a a\rangle,\left\langle a^{\dagger} a^{\dagger} a a\right\rangle,\left\langle\pi^{2}\right\rangle, \ldots
$$

Felder \& Kofman (2001)
Micha \& I.T. (2004)

Approach:

- Lattice simulations (as a quidance)
- Kinetic theory (weak wave turbulence)

Various quantities can be

 measured as functions of time: - Zero mode - Variance, - Particle number,Compare to lattice results and extrapolate.

Felder \& Kofman (2001)
Micha \& I.T. (2004)

Consider simplest $\lambda \varphi^{4}$ model.
In conformal frame, $\phi=\varphi / a$, and rescaled coordinates, $x^{\mu} \rightarrow \sqrt{\lambda} \varphi(0) x^{\mu}$, the equation of motion takes very simple form

$$
\square \phi+\phi^{3}=0
$$

Turbulent spectra

Re-scale the field and coordinates by the current amplitude of the zero mode

$$
\square \phi+\phi^{3}=0
$$

Here $x^{\mu} \rightarrow x^{\mu} \phi_{0}$ and therefore

$$
k \rightarrow k / \phi_{0}
$$

Re-scale the field and coordinates by the current amplitude of the zero mode

$$
\square \phi+\phi^{3}=0
$$

Here $x^{\mu} \rightarrow x^{\mu} \phi_{0}$ and therefore

$$
k \rightarrow k / \phi_{0}
$$

Let $n \sim k^{-s}$. Theory of a stationary wave turbulence predicts

- $s=\frac{5}{3}$ for 4-particle interaction
- $s=\frac{3}{2}$ for 3-particle interaction

Variety of turbulent behavior/regimes/definitions:

- Weak wave turbulence
- Strong turbulence
- Driven turbulence
- Decaying (free) turbulence

We have a source of energy (or particles) located at $k=k_{i}$ and a sink located at $k=k_{f}$. Energy conserves

$$
\partial_{t}\left(\omega_{k} n_{k}\right)+\nabla_{k} \cdot j_{k}=0,
$$

In statiory state energy flux is constant through any surface

$$
\frac{d E}{d t}=\text { const }
$$

Pumped energy should grow linearly with time

$$
E=\text { const } \cdot t
$$

Three major epochs of reheating

$$
V(\chi, X)=\frac{1}{4} \phi^{4}+\frac{g}{2} \phi^{2} \chi^{2}+\frac{h}{4} \chi^{4}
$$

- Parametric resonance
- Driven turbulence
- Free turbulence

At large h and/or g the parametric resonance stops early.

Micha \& I.T. (2004)

Three major epochs of reheating

$$
V(\chi, X)=\frac{1}{4} \phi^{4}+\frac{g}{2} \phi^{2} \chi^{2}+\frac{h}{4} \chi^{4}
$$

- Parametric resonance
- Driven turbulence
- Free turbulence

But distributions evolve faster at late times.

Micha \& I.T. (2004)

We have a source of energy (or particles) located at $k=k_{i}$ and a sink located at $k=k_{f}$. Energy conserves

$$
\partial_{t}\left(\omega_{k} n_{k}\right)+\nabla_{k} \cdot j_{k}=0
$$

or

$$
\omega_{k} I_{k}[n]+\nabla_{k} \cdot j_{k}=0
$$

In statiory state energy flux is constant through any surface

$$
\begin{gathered}
j_{k}=C k^{-d+1+\delta} \\
\nabla_{k} \cdot j_{k}=\delta C k^{-d+\delta}
\end{gathered}
$$

In stationary state $\delta \rightarrow \mathbf{0}$ and

$$
I_{k}[n] \rightarrow k^{-(d+\alpha)} \equiv k^{-\nu}
$$

where $\omega(k)=k^{\alpha}$

Kinetic equation $\quad \dot{n}_{k}=I_{k}[n]$
Collision integral $\quad I_{k}[n]=\int d \Omega\left(k, q_{i}\right) F\left(k, q_{i}\right)$

Example:

$$
d \Omega\left(k, q_{i}\right)=\frac{(2 \pi)^{4}|M|^{2}}{2 \omega_{k}} \delta^{4}\left(k_{\mu}, q_{i \mu}\right) \prod_{i=1}^{3} \frac{d^{3} q_{i}}{2 \omega_{i}(2 \pi)^{3}}
$$

For classical waves ($n \gg 1$)

$$
F\left(k, q_{i}\right)=\left(n_{k}+n_{q_{1}}\right) n_{q_{2}} n_{q_{3}}-n_{k} n_{q_{1}}\left(n_{q_{2}}+n_{q_{3}}\right)
$$

In full quantum problem

$$
F\left(k, q_{i}\right)=\left(1+n_{k}\right)\left(1+n_{q_{1}}\right) n_{q_{2}} n_{q_{3}}-n_{k} n_{q_{1}}\left(1+n_{q_{2}}\right)\left(1+n_{q_{3}}\right)
$$

Collision integral $\quad I_{k}[n]=\int d \Omega\left(k, q_{i}\right) F\left(k, q_{i}\right)$

Rescaling of n :

$$
F(\zeta n)=\zeta^{m-1} F(n)
$$

where m is the number of particles which participate in the process.

Rescaling of momenta:

$$
d \Omega\left(\xi k, \xi q_{i}\right)=\xi^{\mu} d \Omega\left(k, q_{i}\right)
$$

where μ depends upon theory and number of dimensions, e.g. $\mu=1$ for a relativistic theory with dimensionless couplings.

Scaling

Application to stationary turbulence
Let $n(q) \propto q^{-s}$. Then

$$
F\left(\xi k, \xi q_{i}\right)=\xi^{-s(m-1)} F\left(k, q_{i}\right) .
$$

This gives

$$
I_{\xi k}[n]=\xi^{-\nu} I_{k}[n],
$$

where

- $\nu=s(m-1)-\mu$.

With the condition of scale independent flux

- $\nu=d+\alpha$
we find

$$
s=\frac{d+\alpha+\mu}{m-1}
$$

- $s=\frac{5}{3}$ for 4-particle interaction
- $s=\frac{3}{2}$ for 3-particle interaction

Self-similar evolution

Particle numbers on the lattice in the regime of free turbulence

Self-similar evolution

Particle numbers on the lattice in the regime of free turbulence evolve self-similarly

$$
n(k, \eta)=\tau^{-q} n_{0}\left(k \tau^{-p}\right)
$$

with $\quad p=\frac{1}{5}$

Self-similar evolution

Theory:
Free turbulence

- $p=\frac{1}{7}$ for 4-particle interactions
- $p=\frac{1}{5}$ for 3-particle interactions

Particle numbers on the lattice in the regime of free turbulence evolve self-similarly

$$
n(k, \eta)=\tau^{-q} n_{0}\left(k \tau^{-p}\right)
$$

with $\quad p=\frac{1}{5}$

Driven turbulence

- $p=\frac{3}{7}$ for 4-particle interactions
- $p=\frac{2}{5}$ for 3-particle interactions

Self-similar evolution

Theory:

Free turbulence

- $p=\frac{1}{7}$ for 4-particle interactions
- $p=\frac{1}{5}$ for 3-particle interactions

Particle numbers on the lattice in the regime of free turbulence evolve self-similarly

$$
n(k, \eta)=\tau^{-q} n_{0}\left(k \tau^{-p}\right)
$$

with $\quad p=\frac{1}{5}$

Thermalization:

Position of the peak moves as

$$
k(\tau)=k_{0} \tau^{p}
$$

Thermalization will occur when $k_{\text {max }}^{4} \sim T^{4} \sim$ (initial energy) .

$$
\operatorname{var}(\chi, \eta)=\tau^{v} \operatorname{var}(\chi, 0)
$$

Time dependence of the variance of χ field in the model $h=10 g$

Theory:

Driven turbulence

- $v=+\frac{1}{7}$ for 4-particle interactions
- $v=+\frac{1}{5}$ for 3-particle interactions

Free turbulence

- $v=-\frac{2}{7}$ for 4-particle interactions
- $v=-\frac{2}{5}$ for 3-particle interactions

Amplitude of the zero mode.

$$
\phi_{0}^{2}(\eta)=\tau^{-z}
$$

Theory:

Free turbulence

- $z=\frac{2}{5}$ for 4-particle interactions
- $z=\frac{2}{3}$ for 3-particle interactions

Summary

All scaling exponents agree with predictions for 3-particle interactions, which for k-independent matrix elements are

$$
\begin{aligned}
p & =1 /(2 m-1) \\
s & =d-m /(m-1) \\
v & =2 /(2 m-1) \\
z & =2 /(d(m-1)-m)
\end{aligned}
$$

with $d=3$ and $m=3$

Bose-condensate dominates

How 3-particle interactions can appear in $\lambda \phi^{4}$-theory?

Bose-condensate dominates

How 3-particle interactions can appear in $\lambda \phi^{4}$-theory?

3-particle collision integral can be obtained from the 4-particle one with the substitution

$$
\frac{n_{p}}{\omega_{p}} \rightarrow \frac{n_{p}}{\omega_{p}}+(2 \pi)^{3} \delta^{(3)}(\vec{p}) \bar{\phi}_{0}^{2}
$$

- The condensate quickly recovers to the original value after being set to zero "by hands".
- This prohibited direct check of scaling laws for $m=4$.
- For a dedicated lattice studies of Bose-condensation see

Damle, Najumdar, and Sachdev (1996)
Khlebnikov \& I.T. (1999)

Test of kinetic description

Collision integrals and $\dot{n}(k)$ at $\eta=5000$.
$I_{k}^{(3)}$ agrees with $\dot{n}(k)$ to the left of the vertical dashed line

Red line: 3-particle collision integral, $I_{k}^{(3)}$
Blue line: 4-particle collision integral, $I_{k}^{(4)}$

Conclusions

- We identify three different stages of the Universe reheating
- "Parametric resonance." Fast exponential growth of energy in fluctuations, but only a small fraction of energy is transferred during this stage.
- Driven turbulence. Linear growth. Major mechanism of energy transfer.
- Free turbulence. Long stage of thermalization.
- Turbulent evolution is self-similar.
- Bose-condensate of zero mode governs evolution.
- Explicit expressions for particle occupation numbers.
- Estimates for reheating time and temperature.

