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@ “Inflation", a period of accelerated universe expansion,
solves successfully a number of problems of classical
cosmology. (Universe age, flatness, homogeneity, etc.)

@ It has unanticipated amazing predictive power:

CMBR anisotropy
379,000 years after

U

Large-scale structure
13.7 billions years after




During Inflation the Universe is empty, in a vacuum state.
How vacuum was turned into radiation ?
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Chaotic Inflation

Equation of motion

; ., av
$+3Hp+ — =0
de

If H > m the field rolls down slowly

Vig)

p > Mp Inflation

¥ p < Mpy Reheating




Initial linear stage

During Inflation the Universe is “empty”. But small fluctuations
obey
U + [k2 + mgff(‘r)] up =0

and it is not possible to keep fluctuations in vacuum
if meg is time dependent



Initial linear stage

During Inflation the Universe is “empty”. But small fluctuations
obey
U + [k2 + mgff(‘r)] up =0

and it is not possible to keep fluctuations in vacuum
if meg is time dependent

The source for mesr = mef(7) is time-dependence of classical
backgrounds:

e Expansion of space-time, a(T)
@ Evolution of the inflaton field, ¢(7)



Coupling to the inflaton

Scalar X Fermion 1)
mgff = m%{ + gzd)z(t) Meff = My + go(1) J

U + [kz +m§ff} ur =0



Coupling to the inflaton

Scalar X Fermion 1)
miy = mk + g2¢*(t) Mef = My + go(t) J

U + [kz +m§ff} ur =0

Relevant parameter:

9>’
g — 4=
4m¢
Note: g can be very large since
¢’ 12
¢

Kofman, Linde & Starobinsky (94)



Bose versus Fermi :

Scalar X Fermion )

mgy = mi + g%’ (t) Meff = My + gP(t)
Bose stimulation. Pauli blocking.

Occupation numbers grow, Occupation numbers

n = ettt n<l1




Bose versus Fermi :

Scalar X

mZ; = mk + g*¢%(t)

Fermion 4

Meff = My, + go(t)

Bose stimulation. Pauli blocking.
Occupation numbers grow, Occupation numbers
n = eMt n<l1

Explosive decay of the inflaton J

¢(t) = —my/g

Particles are massless at J




Bose versus Fermi :

Scalar X Fermion )
mgy = mi + g%’ (t) Meff = My + gP(t)
Bose stimulation. Pauli blocking.
Occupation numbers grow, Occupation numbers
n = ekt ) n<l1 |
Explosive decay of the inflaton Particles are massless at
¢(t) = —my /g
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Bose versus Fermi :

Scalar X Fermion )
mly = mk + g2 (t) Meff = My + gP(t)
eff — Mx T 9 eff = My + g
Bose stimulation. Pauli blocking.
Occupation numbers grow, Occupation numbers
n = ekt ) n<l1 |
Explosive decay of the inflaton Particles are massless at
| ¢(t) = —my /g
4 Y
Quantum to classical transition Intensive creation of superheavy
Khlebnikov & I.T. (96) fermions
Non-thermal phase transitions Giudice, Peloso, Riotto, & I. T. (99)
Kofman, Linde & Starobinsky (96) Trans-Planckian features in CMB
L.T. (96) Chung, Kolb, Riotto, & I. T. (00)




Matter creation: Bose versus Fermi
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Red lines: fraction of produced Bosons
Blue lines: fraction of produced Fermions



Matter creation: end of linear stage

In the linear approximation in Minkowski space-time occupation
numbers grow exponentially without limit.

To solve the problem one needs to understand the non-linear
dynamics.

@ At large occupation numbers it is possible to map quantum
evolution into classical:
quantum density matrix = classical density matrix
Khlebnikov, I.T. (1996)
@ This allows numerical modelling on the lattice

e starting from vacuum
e through "parametric resonance", then through preheating
e and down to physical effects in question



When particle production ends?
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Dotted lines: linear problem.
Solid lines: Hartree approximation.



When particle production ends?
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Non-thermal Phase Transitions

String formation

V(¢) = A2 +¢3—v?)?
v ~ 1010 GeV

First order phase transition

V(, X) = A(¢* — v?)? + g*¢*X?

T g%/ =200

‘ Bubble of new-phase
Khlebnikov, Kofman, Linde & I.T. (98)



Thermalization after Inflation

Questions:
@ How system approaches equilibrium?
@ When? What is thermalization temperature?

Are of general interest and important for practical applications.
It influences:

@ Inflationary predictions

@ Baryogenesis

@ Abundance of gravitino and dark matter relics
@ Primordial fluctuations



Approach:

o Lattice simulations Various quantities can be
(as a guidance) measured as functions of time:
e Zero mode, ¢ = (¢)
o Variance, (¢?) - ¢3
o Particle number,
ni = (a'(k)a(k))
o Correlators,
(aa), {aTaaa), (7?), ...

Felder & Kofman (2001)
Micha & I.T. (2004)



Approach:

@ Kinetic theory Compare to lattice results and
(weak wave turbulence) extrapolate.

Felder & Kofman (2001)
Micha & I.T. (2004)



Consider simplest Ap* model.

In conformal frame, ¢ = ¢/a, and rescaled coordinates,
x* — v/ Ap(0) z#, the equation of motion takes very simple
form

O¢+¢°=0



Turbulent spectra

Re-scale the field and coordinates
by the current amplitude of the
zero mode

O¢p 4+ ¢ =0

Here x#* — x* ¢ and therefore
k—k/¢po

10

k



Turbulent spectra

10

1 k (P;yl

Re-scale the field and coordinates
by the current amplitude of the
zero mode

O¢p+ ¢ =0

Here x#* — x* ¢ and therefore
k—k/¢po

~ k—%. Theory of a stationary wave turbulence predicts

Let n
@ s = g for 4-particle interaction
@ s = % for 3-particle interaction



Turbulence

Variety of turbulent behavior/regimes/definitions:

£
10°E

@ Weak wave turbulence 10g

10°F
@ Strong turbulence n 10
10'E
10°E

@ Driven turbulence 0

@ Decaying (free) turbulence




Kolmogorov Turbulence

We have a source of energy (or particles) located at k = k; and
a sink located at k = ky. Energy conserves

Ot(wrng) + Vi, - jr = 0,

In statiory state energy flux is constant through any surface

dE
— = const
dt

’ 4 Pumped energy should grow linearly with

time
E = const -t




Three major epochs of reheating

1 g h
V(x, X) = Z¢4 + Eqbzxz + ZX4

—— : — Parametric resonance

[ e free turbulence ] — Driven turbulence
: T h=10g _
w0 L - 7 T00g 4 Free turbulence
E .f¥driven turbulence E
[~Nn ]
o, | ] At Ia.rge h and/or g the para-
100 L 4 metric resonance stops early.
[ . i Micha & I.T. (2004)
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Three major epochs of reheating

1 g h
V(x,X) = Z¢4 + Erzbzxz + ZX4

10 .
xl0 — Parametric resonance
3500 )
F — Driven turbulence
3000 F-
E — Free turbulence
2500
k4nkzooo E es00
1500 & ! But distributions evolve faster at
1000 £ h=100g late times.
500i Micha & I.T. (2004)
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Kolmogorov Turbulence

We have a source of energy (or particles) located at k = k; and
a sink located at k = ky. Energy conserves

O(wrnk) + Vi - jr = 0,

wilg[n] + Vi - jr = 0.
In statiory state energy flux is constant through any surface
jk, =C k—d+1+5
Vi - jr = 6C k—0

h « In stationary state 6 — 0 and

Ii[n] — k—@+) = v

where w(k) = k*



Kinetic Theory

Kinetic equation 7k = Ix[n]
Collision integral  Ix[n] = [ dQ(k, q;) F(k, g;)

Example: . ,
K © = O
Y For classical waves (n > 1)
/ F(k,q;) = (nk+mnq,)ng,ng; —nkng (g, +1g;)
q2 q3

In full quantum problem
F(k,q;) = (1 + ni) (1 4 ng,)ngng — neng (1 + ng,) (1 + ng,)



Collision integral  Ix[n] = [ dQ(k, ;) F(k, q;)
Rescaling of mn:

F(¢n) =¢™'F(n),

where m is the number of particles which participate in the
process.

Rescaling of momenta:
dQ(€k7 qu) = E“ dﬂ(ka qz’) ’

where p depends upon theory and number of dimensions,
e.g. n = 1 for a relativistic theory with dimensionless couplings.



Application to stationary turbulence

Let n(q) o< ¢—°. Then
F(¢k,éq) = £ ™D F(k, q;) -

This gives
Igp[n] = £ " Ix[n] ,
where

Qv=s(m—1)—p.

With the condition of scale independent flux

Qv =d+«
we find
s = dtoatp @ s = 3 for 4-particle interaction
m—1

N[ wlwx

for 3-particle interaction




Self-similar evolution
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Self-similar evolution

4500 n = 3600 Particle numbers on the lattice
4000 n=5100 . h . f f b |
3500 1 = 7000 in the regime of free turbulence

M = 10000 evolve self-similarly

n(k,n) = 774 no(kTP)

with p =3




Self-similar evolution

n = 3600
4000 n=5100
3500 n = 7000

n = 10000

2 4 6 8 10 12

k
Theory:

Free turbulence
e p=1 for 4-particle

interactions

o p= % for 3-particle

interactions

Particle numbers on the lattice
in the regime of free turbulence
evolve self-similarly

n(k,n) = 774 no(kTP)

with p =3

Driven turbulence

@ p=23 for 4-particle

interactions

o p= % for 3-particle

interactions



Self-similar evolution
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evolve self-similarly

n(k,n) = 77 no(k7?)

500 with p = %
2 4 6 8 10 12 14
k
Theory: Thermalization:
Free turbulence Position of the peak moves as
e p= % for 4-particle k(t) = ko 7P
interactions
-1 for3 ol Thermalization will occur when
® p=j for j-particle ki~ T* ~ (initial energy).
interactions




Field variance

10° & E
10" ¢ 3 var(x,n) = 7° var(x,0)
var(y) f 9
10-4 E = )
E E Time dependence of the variance
r ] of x field in the model h = 10g
10°
Theory:
Driven turbulence Free turbulence
@ v = +1 for 4-particle @ v = —2 for 4-particle
interactions interactions
@ v =+ for 3-particle @ v = —2 for 3-particle

interactions interactions



Amplitude of the zero mode.

T T T T T

do(n) =177

10 10°

Theory:
Free turbulence
@ z =
@ z =

for 4-particle interactions

win o

for 3-particle interactions



All scaling exponents agree with predictions for 3-particle
interactions, which for k-independent matrix elements are

p=1/(2m—1)
s=d—m/(m—1)
v=2/(2m — 1)
z=2/(d(m —1) —m)

withd =3and m = 3



Bose-condensate dominates

How 3-particle interactions can appear in A¢*-theory?



Bose-condensate dominates

How 3-particle interactions can appear in A¢*-theory?

: 3-particle collision integral can be obtained
I ql from the 4-particle one with the substitution
|
|
|

"p

— =2+ (2m)*5) ()83

Wp p



Bose-condensation on a lattice

@ The condensate quickly recovers to the original value after
being set to zero "by hands".
@ This prohibited direct check of scaling laws for m = 4.
@ For a dedicated lattice studies of Bose-condensation see
Damle, Najumdar, and Sachdev (1996)
Khlebnikov & I.T. (1999)



Test of kinetic description

Collision integrals and n(k)
at n = 5000.

I,(j) agrees with nn(k) to the
left of the vertical dashed
line

Absolute values

Red line: 3-particle collision integral, I,S)
Blue line: 4-particle collision integral, I,(:)



Conclusions

@ We identify three different stages of the Universe reheating

@ "Parametric resonance." Fast exponential growth of energy in
fluctuations, but only a small fraction of energy is transferred
during this stage.

@ Driven turbulence. Linear growth. Major mechanism of energy
transfer.

@ Free turbulence. Long stage of thermalization.

@ Turbulent evolution is self-similar.

@ Bose-condensate of zero mode governs evolution.
@ Explicit expressions for particle occupation numbers.
@ Estimates for reheating time and temperature.
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