Thermalization of boost-invariant plasma at strong coupling from AdS/CFT

Romuald A. Janik

Jagiellonian University Kraków

M. Heller, RJ, P. Witaszczyk, 1103.3452 M. Heller, RJ, P. Witaszczyk, 1201.????

Outline

- Key question
- AdS/CFT, hydrodynamics and nonequilibrium processes
- Boost-invariant flow
- The AdS/CFT method
- Main results
 - Nonequilibrium vs. hydrodynamic behaviour
 - Entropy
 - Characteristics of thermalization
- Conclusions

Key question:

Understand the features of (early) thermalization for an evolving (boost-invariant) plasma system

What do we mean by thermalization here?

Key question:

Understand the features of (early) thermalization for an evolving (boost-invariant) plasma system

What do we mean by thermalization here?

Key question:

Understand the features of (early) thermalization for an evolving (boost-invariant) plasma system

What do we mean by thermalization here?

- At weak coupling the obvious definition would be to require thermal momentum distributions for quarks and gluons...
- At strong coupling, the picture of a gas of gluons is not really valid
 — alternatively require that observables such as 2-point functions/spatial
 Wilson loops/ entanglement entropy are the same as for a thermal system...
 explored in the AdS/CFT contex
- This is very good for studying relaxation processes where the final state is some uniform static plasma system — this is not so for the plasma undergoing expansion
- For an expanding plasma fireball we need *local* equilibrium bilocal probes get contaminated by collective flow
- We adopt an *operational* definition of thermalization the point when plasma starts being describable by (viscous) hydrodynamics.

- At weak coupling the obvious definition would be to require thermal momentum distributions for quarks and gluons...
- At strong coupling, the picture of a gas of gluons is not really valid
 — alternatively require that observables such as 2-point functions/spatial
 Wilson loops/ entanglement entropy are the same as for a thermal system...
 explored in the AdS/CFT context
- This is very good for studying relaxation processes where the final state is some uniform static plasma system — this is not so for the plasma undergoing expansion
- For an expanding plasma fireball we need *local* equilibrium bilocal probes get contaminated by collective flow
- We adopt an *operational* definition of thermalization the point when plasma starts being describable by (viscous) hydrodynamics.

- At weak coupling the obvious definition would be to require thermal momentum distributions for quarks and gluons...
- At strong coupling, the picture of a gas of gluons is not really valid

 alternatively require that observables such as 2-point functions/spatial
 Wilson loops/ entanglement entropy are the same as for a thermal system...
 explored in the AdS/CFT context
- This is very good for studying relaxation processes where the final state is some uniform static plasma system — this is not so for the plasma undergoing expansion
- For an expanding plasma fireball we need *local* equilibrium bilocal probes get contaminated by collective flow
- We adopt an *operational* definition of thermalization the point when plasma starts being describable by (viscous) hydrodynamics.

- At weak coupling the obvious definition would be to require thermal momentum distributions for quarks and gluons...
- At strong coupling, the picture of a gas of gluons is not really valid
 — alternatively require that observables such as 2-point functions/spatial
 Wilson loops/ entanglement entropy are the same as for a thermal system...
 explored in the AdS/CFT context
- This is very good for studying relaxation processes where the final state is some uniform static plasma system — this is not so for the plasma undergoing expansion
- For an expanding plasma fireball we need *local* equilibrium bilocal probes get contaminated by collective flow
- We adopt an *operational* definition of thermalization the point when plasma starts being describable by (viscous) hydrodynamics.

- At weak coupling the obvious definition would be to require thermal momentum distributions for quarks and gluons...
- At strong coupling, the picture of a gas of gluons is not really valid
 — alternatively require that observables such as 2-point functions/spatial
 Wilson loops/ entanglement entropy are the same as for a thermal system...
 explored in the AdS/CFT context
- This is very good for studying relaxation processes where the final state is some uniform static plasma system — this is not so for the plasma undergoing expansion
- For an expanding plasma fireball we need *local* equilibrium bilocal probes get contaminated by collective flow
- We adopt an *operational* definition of thermalization the point when plasma starts being describable by (viscous) hydrodynamics.

- At weak coupling the obvious definition would be to require thermal momentum distributions for quarks and gluons...
- At strong coupling, the picture of a gas of gluons is not really valid
 — alternatively require that observables such as 2-point functions/spatial
 Wilson loops/ entanglement entropy are the same as for a thermal system...
 explored in the AdS/CFT context
- This is very good for studying relaxation processes where the final state is some uniform static plasma system — this is not so for the plasma undergoing expansion
- For an expanding plasma fireball we need *local* equilibrium bilocal probes get contaminated by collective flow
- We adopt an *operational* definition of thermalization the point when plasma starts being describable by (viscous) hydrodynamics.

- At weak coupling the obvious definition would be to require thermal momentum distributions for quarks and gluons...
- At strong coupling, the picture of a gas of gluons is not really valid
 — alternatively require that observables such as 2-point functions/spatial
 Wilson loops/ entanglement entropy are the same as for a thermal system...
 explored in the AdS/CFT context
- This is very good for studying relaxation processes where the final state is some uniform static plasma system — this is not so for the plasma undergoing expansion
- For an expanding plasma fireball we need *local* equilibrium bilocal probes get contaminated by collective flow
- We adopt an *operational* definition of thermalization the point when plasma starts being describable by (viscous) hydrodynamics.

- Hydrodynamics isolates long wavelength effective degrees of freedom of a theory
- The energy-momentum tensor $T_{\mu\nu}$ is expressed in terms of a local temperature T and flow velocity u^μ
- $T_{\mu\nu}$ is expressed as an expansion in the gradients of the flow velocities (shown here for $\mathcal{N}=4$ SYM)

$$\begin{split} T_{\textit{rescaled}}^{\mu\nu} &= \underbrace{(\pi T)^4 (\eta^{\mu\nu} + 4 u^\mu u^\nu)}_{\textit{perfect fluid}} - \underbrace{2(\pi T)^3 \sigma^{\mu\nu}}_{\textit{viscosity}} + \\ &+ \underbrace{(\pi T^2) \left(\log 2 T_{2a}^{\mu\nu} + 2 T_{2b}^{\mu\nu} + (2 - \log 2) \left(\frac{1}{3} T_{2c}^{\mu\nu} + T_{2d}^{\mu\nu} + T_{2e}^{\mu\nu} \right) \right)}_{\textit{perfect fluid}} \end{split}$$

- The coefficients of the various tensor structures are the transport coefficients. In a conformal theory these are pure numbers times powers of *T*.
- Full nonlinear hydrodynamic equations follow now from $\partial_{\mu}T^{\mu\nu}=0$
- The above form of $T_{\mu\nu}$ for $\mathcal{N}=4$ SYM at strong coupling is **not** an assumption but can be proven from AdS/CFT Minwalla et.al

- Hydrodynamics isolates long wavelength effective degrees of freedom of a theory
- The energy-momentum tensor $T_{\mu\nu}$ is expressed in terms of a local temperature T and flow velocity u^μ
- $T_{\mu\nu}$ is expressed as an expansion in the gradients of the flow velocities (shown here for $\mathcal{N}=4$ SYM)

$$T_{rescaled}^{\mu\nu} = \underbrace{(\pi T)^4 (\eta^{\mu\nu} + 4u^{\mu}u^{\nu})}_{perfect\ fluid} - \underbrace{2(\pi T)^3 \sigma^{\mu\nu}}_{viscosity} + \underbrace{(\pi T^2) \left(\log 2T_{2a}^{\mu\nu} + 2T_{2b}^{\mu\nu} + (2 - \log 2) \left(\frac{1}{3} T_{2c}^{\mu\nu} + T_{2d}^{\mu\nu} + T_{2e}^{\mu\nu} \right) \right)}_{}$$

- The coefficients of the various tensor structures are the transport coefficients. In a conformal theory these are pure numbers times powers of *T*.
- Full nonlinear hydrodynamic equations follow now from $\partial_{\mu}T^{\mu\nu}=0$
- The above form of $T_{\mu\nu}$ for $\mathcal{N}=4$ SYM at strong coupling is **not** an assumption but can be proven from AdS/CFT Minwalla et.al

- Hydrodynamics isolates long wavelength effective degrees of freedom of a theory
- The energy-momentum tensor $T_{\mu\nu}$ is expressed in terms of a local temperature T and flow velocity u^μ
- $T_{\mu\nu}$ is expressed as an expansion in the gradients of the flow velocities (shown here for $\mathcal{N}=4$ SYM)

$$\begin{split} T_{\textit{rescaled}}^{\mu\nu} &= \underbrace{\left(\pi \, T\right)^4 \! \left(\eta^{\mu\nu} + 4 u^\mu u^\nu\right)}_{\textit{perfect fluid}} - \underbrace{2(\pi \, T)^3 \sigma^{\mu\nu}}_{\textit{viscosity}} + \\ &+ \left(\pi \, T^2\right) \left(\log 2 \, T_{2a}^{\mu\nu} + 2 \, T_{2b}^{\mu\nu} + \left(2 - \log 2\right) \left(\frac{1}{3} \, T_{2c}^{\mu\nu} + T_{2d}^{\mu\nu} + T_{2e}^{\mu\nu}\right)\right) \end{split}$$

- The coefficients of the various tensor structures are the transport coefficients. In a conformal theory these are pure numbers times powers of *T*.
- Full nonlinear hydrodynamic equations follow now from $\partial_{\mu}T^{\mu\nu}=0$
- The above form of $T_{\mu\nu}$ for $\mathcal{N}=4$ SYM at strong coupling is **not** an assumption but can be proven from AdS/CFT Minwalla et.a

- Hydrodynamics isolates long wavelength effective degrees of freedom of a theory
- The energy-momentum tensor $T_{\mu\nu}$ is expressed in terms of a local temperature T and flow velocity u^μ
- $T_{\mu\nu}$ is expressed as an expansion in the gradients of the flow velocities (shown here for $\mathcal{N}=4$ SYM)

$$\begin{split} T_{\textit{rescaled}}^{\mu\nu} &= \underbrace{(\pi T)^4 (\eta^{\mu\nu} + 4 u^\mu u^\nu)}_{\textit{perfect fluid}} - \underbrace{2(\pi T)^3 \sigma^{\mu\nu}}_{\textit{viscosity}} + \\ &+ (\pi T^2) \left(\log 2 T_{2a}^{\mu\nu} + 2 T_{2b}^{\mu\nu} + (2 - \log 2) \left(\frac{1}{3} T_{2c}^{\mu\nu} + T_{2d}^{\mu\nu} + T_{2e}^{\mu\nu} \right) \right) \end{split}$$

- The coefficients of the various tensor structures are the transport coefficients.
 In a conformal theory these are pure numbers times powers of T.
- ullet Full nonlinear hydrodynamic equations follow now from $\partial_\mu T^{\mu
 u}=0$
- The above form of $T_{\mu\nu}$ for $\mathcal{N}=4$ SYM at strong coupling is **not** an assumption but can be proven from AdS/CFT Minwalla et.

- Hydrodynamics isolates long wavelength effective degrees of freedom of a theory
- The energy-momentum tensor $T_{\mu\nu}$ is expressed in terms of a local temperature T and flow velocity u^μ
- $T_{\mu\nu}$ is expressed as an expansion in the gradients of the flow velocities (shown here for $\mathcal{N}=4$ SYM)

$$T_{rescaled}^{\mu\nu} = \underbrace{(\pi T)^{4} (\eta^{\mu\nu} + 4u^{\mu}u^{\nu})}_{perfect\ fluid} - \underbrace{2(\pi T)^{3}\sigma^{\mu\nu}}_{viscosity} + \underbrace{(\pi T^{2}) \left(\log 2T_{2a}^{\mu\nu} + 2T_{2b}^{\mu\nu} + (2 - \log 2) \left(\frac{1}{3}T_{2c}^{\mu\nu} + T_{2d}^{\mu\nu} + T_{2e}^{\mu\nu}\right)\right)}_{}$$

- second order hydrodynamics
- The coefficients of the various tensor structures are the transport coefficients. In a conformal theory these are pure numbers times powers of *T*.
- Full nonlinear hydrodynamic equations follow now from $\partial_{\mu}T^{\mu\nu}=0$
- The above form of $T_{\mu\nu}$ for $\mathcal{N}=4$ SYM at strong coupling is **not** an assumption but can be proven from AdS/CFT Minwalla et

- Hydrodynamics isolates long wavelength effective degrees of freedom of a theory
- The energy-momentum tensor $T_{\mu\nu}$ is expressed in terms of a local temperature T and flow velocity u^μ
- $T_{\mu\nu}$ is expressed as an expansion in the gradients of the flow velocities (shown here for $\mathcal{N}=4$ SYM)

$$\begin{split} T_{\textit{rescaled}}^{\mu\nu} &= \underbrace{(\pi T)^4 (\eta^{\mu\nu} + 4 u^\mu u^\nu)}_{\textit{perfect fluid}} - \underbrace{2(\pi T)^3 \sigma^{\mu\nu}}_{\textit{viscosity}} + \\ &+ \underbrace{(\pi T^2) \left(\log 2 T_{2a}^{\mu\nu} + 2 T_{2b}^{\mu\nu} + (2 - \log 2) \left(\frac{1}{3} T_{2c}^{\mu\nu} + T_{2d}^{\mu\nu} + T_{2e}^{\mu\nu} \right) \right)}_{\textit{perfect fluid}} \end{split}$$

- The coefficients of the various tensor structures are the transport coefficients. In a conformal theory these are pure numbers times powers of *T*.
- Full nonlinear hydrodynamic equations follow now from $\partial_{\mu}T^{\mu\nu}=0$
- The above form of $T_{\mu\nu}$ for $\mathcal{N}=4$ SYM at strong coupling is **not** an assumption but can be proven from AdS/CFT Minwalla et.

- Hydrodynamics isolates long wavelength effective degrees of freedom of a theory
- The energy-momentum tensor $T_{\mu\nu}$ is expressed in terms of a local temperature T and flow velocity u^μ
- $T_{\mu\nu}$ is expressed as an expansion in the gradients of the flow velocities (shown here for $\mathcal{N}=4$ SYM)

$$\begin{split} T_{\textit{rescaled}}^{\mu\nu} &= \underbrace{(\pi \, T)^4 (\eta^{\mu\nu} + 4 u^\mu u^\nu)}_{\textit{perfect fluid}} - \underbrace{2(\pi \, T)^3 \sigma^{\mu\nu}}_{\textit{viscosity}} + \\ &+ \underbrace{(\pi \, T^2) \left(\log 2 \, T_{2a}^{\mu\nu} + 2 \, T_{2b}^{\mu\nu} + (2 - \log 2) \left(\frac{1}{3} \, T_{2c}^{\mu\nu} + T_{2d}^{\mu\nu} + T_{2e}^{\mu\nu} \right) \right)}_{\textit{perfect fluid}} \end{split}$$

- The coefficients of the various tensor structures are the transport coefficients. In a conformal theory these are pure numbers times powers of *T*.
- Full nonlinear hydrodynamic equations follow now from $\partial_{\mu}T^{\mu\nu}=0$
- The above form of $T_{\mu\nu}$ for $\mathcal{N}=4$ SYM at strong coupling is **not** an assumption but can be proven from AdS/CFT Minwalla et.a

- Hydrodynamics isolates long wavelength effective degrees of freedom of a theory
- The energy-momentum tensor $T_{\mu\nu}$ is expressed in terms of a local temperature T and flow velocity u^μ
- $T_{\mu\nu}$ is expressed as an expansion in the gradients of the flow velocities (shown here for $\mathcal{N}=4$ SYM)

$$T_{rescaled}^{\mu\nu} = \underbrace{(\pi T)^4 (\eta^{\mu\nu} + 4u^\mu u^\nu)}_{perfect \ fluid} - \underbrace{2(\pi T)^3 \sigma^{\mu\nu}}_{viscosity} + \underbrace{(\pi T^2) \left(\log 2T_{2a}^{\mu\nu} + 2T_{2b}^{\mu\nu} + (2 - \log 2) \left(\frac{1}{3}T_{2c}^{\mu\nu} + T_{2d}^{\mu\nu} + T_{2e}^{\mu\nu}\right)\right)}_{second \ order \ hydrodynamics}$$

- The coefficients of the various tensor structures are the transport coefficients. In a conformal theory these are pure numbers times powers of *T*.
- Full nonlinear hydrodynamic equations follow now from $\partial_{\mu}T^{\mu\nu}=0$
- The above form of $T_{\mu\nu}$ for $\mathcal{N}=4$ SYM at strong coupling is **not** an assumption but can be proven from AdS/CFT Minwalla et.al.

Linearized hydrodynamics

- Look at small disturbances of the uniform static plasma...
- If $T_{\mu\nu}$ is described by (1st order viscous) hydrodynamics then one can derive dispersion relation of long wavelength modes from hydrodynamic equations: shear modes:

$$\omega_{shear} = -i \frac{\eta}{E + p} k^2$$

sound modes:

$$\omega_{sound} = \frac{1}{\sqrt{3}}k - i\frac{2}{3}\frac{\eta}{E+p}k^2$$

- If we were to include terms in $T_{\mu\nu}$ with more derivatives (higher order viscous hydrodynamics), we would get terms with higher powers of k in the dispersion relations...
- Hypothetical resummed *all-order* hydrodynamics would predict the full dispersion relation for these modes $\omega_{shear}(k)$, $\omega_{sound}(k)$

Linearized hydrodynamics

- Look at small disturbances of the uniform static plasma...
- If $T_{\mu\nu}$ is described by (1st order viscous) hydrodynamics then one can derive dispersion relation of long wavelength modes from hydrodynamic equations:

shear modes:

$$\omega_{shear} = -i \frac{\eta}{E + p} k^2$$

sound modes:

$$\omega_{\text{sound}} = \frac{1}{\sqrt{3}}k - i\frac{2}{3}\frac{\eta}{E+p}k^2$$

- If we were to include terms in $T_{\mu\nu}$ with more derivatives (higher order viscous hydrodynamics), we would get terms with higher powers of k in the dispersion relations...
- Hypothetical resummed *all-order* hydrodynamics would predict the full dispersion relation for these modes $\omega_{shear}(k)$, $\omega_{sound}(k)$

Linearized hydrodynamics

- Look at small disturbances of the uniform static plasma...
- If $T_{\mu\nu}$ is described by (1st order viscous) hydrodynamics then one can derive dispersion relation of long wavelength modes from hydrodynamic equations:

$$\omega_{shear} = -i \frac{\eta}{E + p} k^2$$

sound modes:

$$\omega_{sound} = \frac{1}{\sqrt{3}}k - i\frac{2}{3}\frac{\eta}{E+p}k^2$$

- If we were to include terms in $T_{\mu\nu}$ with more derivatives (higher order viscous hydrodynamics), we would get terms with higher powers of k in the dispersion relations...
- Hypothetical resummed *all-order* hydrodynamics would predict the full dispersion relation for these modes $\omega_{shear}(k)$, $\omega_{sound}(k)$

Linearized hydrodynamics

- Look at small disturbances of the uniform static plasma...
- If $T_{\mu\nu}$ is described by (1st order viscous) hydrodynamics then one can derive dispersion relation of long wavelength modes from hydrodynamic equations:

$$\omega_{shear} = -i\frac{\eta}{E+p}k^2$$

sound modes:

$$\omega_{sound} = \frac{1}{\sqrt{3}}k - i\frac{2}{3}\frac{\eta}{E+p}k^2$$

- If we were to include terms in $T_{\mu\nu}$ with more derivatives (higher order viscous hydrodynamics), we would get terms with higher powers of k in the dispersion relations...
- Hypothetical resummed *all-order* hydrodynamics would predict the full dispersion relation for these modes $\omega_{shear}(k)$, $\omega_{sound}(k)$

Linearized hydrodynamics

- Look at small disturbances of the uniform static plasma...
- If $T_{\mu\nu}$ is described by (1st order viscous) hydrodynamics then one can derive dispersion relation of long wavelength modes from hydrodynamic equations:

$$\omega_{shear} = -i\frac{\eta}{E+p}k^2$$

sound modes:

$$\omega_{sound} = \frac{1}{\sqrt{3}}k - i\frac{2}{3}\frac{\eta}{E+p}k^2$$

- If we were to include terms in $T_{\mu\nu}$ with more derivatives (higher order viscous hydrodynamics), we would get terms with higher powers of k in the dispersion relations...
- Hypothetical resummed *all-order* hydrodynamics would predict the full dispersion relation for these modes $\omega_{shear}(k)$, $\omega_{sound}(k)$

Linearized hydrodynamics

- Look at small disturbances of the uniform static plasma...
- If $T_{\mu\nu}$ is described by (1st order viscous) hydrodynamics then one can derive dispersion relation of long wavelength modes from hydrodynamic equations:

$$\omega_{shear} = -i \frac{\eta}{E + p} k^2$$

sound modes:

$$\omega_{sound} = \frac{1}{\sqrt{3}}k - i\frac{2}{3}\frac{\eta}{E+p}k^2$$

- If we were to include terms in $T_{\mu\nu}$ with more derivatives (higher order viscous hydrodynamics), we would get terms with higher powers of k in the dispersion relations...
- Hypothetical resummed *all-order* hydrodynamics would predict the full dispersion relation for these modes $\omega_{shear}(k)$, $\omega_{sound}(k)$

Linearized hydrodynamics

- Look at small disturbances of the uniform static plasma...
- If $T_{\mu\nu}$ is described by (1st order viscous) hydrodynamics then one can derive dispersion relation of long wavelength modes from hydrodynamic equations:

$$\omega_{shear} = -i \frac{\eta}{E + p} k^2$$

sound modes:

$$\omega_{sound} = \frac{1}{\sqrt{3}}k - i\frac{2}{3}\frac{\eta}{E+p}k^2$$

- If we were to include terms in $T_{\mu\nu}$ with more derivatives (higher order viscous hydrodynamics), we would get terms with higher powers of k in the dispersion relations...
- Hypothetical resummed *all-order* hydrodynamics would predict the full dispersion relation for these modes $\omega_{shear}(k)$, $\omega_{sound}(k)$

- The uniform static plasma system is described as a static planar black hole
- ullet Small disturbances of the uniform static plasma \equiv small perturbations of the black hole metric (\equiv quasinormal modes (QNM))

$$g_{\alpha\beta}^{5D}=g_{\alpha\beta}^{5D,black\ hole}+\delta g_{\alpha\beta}^{5D}(z)e^{-i\omega t+ikx}$$

 Dispersion relation fixed by linearized Einstein's equations. Results for the sound channel

- This is equivalent to summing contributions from all-order viscous hydrodynamics
- But, in addition, there is an infinite set of higher QNM effective degrees
 of freedom not contained in the hydrodynamic description at all!

- The uniform static plasma system is described as a static planar black hole
- Small disturbances of the uniform static plasma \equiv small perturbations of the black hole metric (\equiv quasinormal modes (QNM))

$$g_{lphaeta}^{5D}=g_{lphaeta}^{5D, ext{black hole}}+\delta g_{lphaeta}^{5D}(z)e^{-ioldsymbol{\omega}t+ioldsymbol{k} ext{x}}$$

 Dispersion relation fixed by linearized Einstein's equations. Results for the sound channel

- This is equivalent to summing contributions from all-order viscous hydrodynamics
- But, in addition, there is an infinite set of higher QNM effective degrees
 of freedom not contained in the hydrodynamic description at all!

- The uniform static plasma system is described as a static planar black hole
- Small disturbances of the uniform static plasma \equiv small perturbations of the black hole metric (\equiv quasinormal modes (QNM))

$$g_{lphaeta}^{5D}=g_{lphaeta}^{5D,black\ hole}+\delta g_{lphaeta}^{5D}(z)e^{-i\omega t+i\mathbf{k}x}$$

 Dispersion relation fixed by linearized Einstein's equations. Results for the sound channel

- I his is equivalent to summing contributions from all-order viscous hydrodynamics
- But, in addition, there is an infinite set of higher QNM effective degrees
 of freedom not contained in the hydrodynamic description at all!

- The uniform static plasma system is described as a static planar black hole
- Small disturbances of the uniform static plasma \equiv small perturbations of the black hole metric (\equiv quasinormal modes (QNM))

$$g_{lphaeta}^{5D}=g_{lphaeta}^{5D,black\ hole}+\delta g_{lphaeta}^{5D}(z)e^{-i\omega t+i\mathbf{k}x}$$

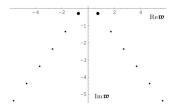
 Dispersion relation fixed by linearized Einstein's equations. Results for the sound channel

- I his is equivalent to summing contributions from all-order viscous hydrodynamics
- But, in addition, there is an infinite set of higher QNM effective degrees
 of freedom not contained in the hydrodynamic description at all!

- The uniform static plasma system is described as a static planar black hole
- Small disturbances of the uniform static plasma \equiv small perturbations of the black hole metric (\equiv quasinormal modes (QNM))

$$g_{lphaeta}^{5D}=g_{lphaeta}^{5D,black\ hole}+\delta g_{lphaeta}^{5D}(z)\mathrm{e}^{-i\omega t+i\mathbf{k}x}$$

 Dispersion relation fixed by linearized Einstein's equations. Results for the sound channel



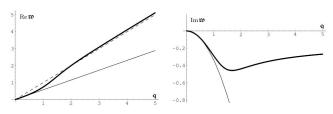
from Kovtun, Starinets hep-th/0506184

- This is equivalent to summing contributions from all-order viscous hydrodynamics
- But, in addition, there is an infinite set of higher QNM effective degrees
 of freedom not contained in the hydrodynamic description at all!

- The uniform static plasma system is described as a static planar black hole
- Small disturbances of the uniform static plasma \equiv small perturbations of the black hole metric (\equiv quasinormal modes (QNM))

$$g_{lphaeta}^{5D}=g_{lphaeta}^{5D,black\ hole}+\delta g_{lphaeta}^{5D}(z)e^{-ioldsymbol{\omega}t+ioldsymbol{k}x}$$

• Dispersion relation fixed by linearized Einstein's equations. Results for the sound channel



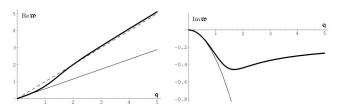
from Kovtun, Starinets hep-th/0506184

- This is equivalent to summing contributions from all-order viscous hydrodynamics
- But, in addition, there is an infinite set of higher QNM effective degrees
 of freedom not contained in the hydrodynamic description at all!

- The uniform static plasma system is described as a static planar black hole
- Small disturbances of the uniform static plasma ≡ small perturbations of the black hole metric (≡ quasinormal modes (QNM))

$$g_{lphaeta}^{5D}=g_{lphaeta}^{5D,black\ hole}+\delta g_{lphaeta}^{5D}(z)e^{-ioldsymbol{\omega}t+ioldsymbol{k} imes}$$

 Dispersion relation fixed by linearized Einstein's equations. Results for the sound channel



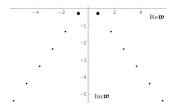
from Kovtun, Starinets hep-th/0506184

- This is equivalent to summing contributions from all-order viscous hydrodynamics
- But, in addition, there is an infinite set of higher QNM effective degrees
 of freedom not contained in the hydrodynamic description at all!

- The uniform static plasma system is described as a static planar black hole
- Small disturbances of the uniform static plasma ≡ small perturbations of the black hole metric (≡ quasinormal modes (QNM))

$$g_{lphaeta}^{5D}=g_{lphaeta}^{5D,black\ hole}+\delta g_{lphaeta}^{5D}(z) \mathrm{e}^{-i\omega t+i\mathbf{k}x}$$

 Dispersion relation fixed by linearized Einstein's equations. Results for the sound channel



- This is equivalent to summing contributions from all-order viscous hydrodynamics
- But, in addition, there is an infinite set of higher QNM effective degrees
 of freedom not contained in the hydrodynamic description at all!

Einstein's equations in AdS/CFT

- contain all-order viscous hydrodynamic modes (with specific values of all transport coefficients)
- in addition contain the dynamics of genuine nonhydrodynamical modes
- incorporate their interactions in a fully nonlinear (and unique) way

Consequence:

Einstein's equations can serve to study nonequilibrium processes in strongly coupled $\mathcal{N}=4$ SYM and are an effective tool for exploring physics beyond hydrodynamics

Question:

In the case of boost-invariant plasma expansion can we unambigously determine

- i) whether these nonhydrodynamical modes are really important
- ii) whether it would be enough to consider just all-order viscous hydrodynamic

Einstein's equations in AdS/CFT

- contain all-order viscous hydrodynamic modes (with specific values of all transport coefficients)
- in addition contain the dynamics of genuine nonhydrodynamical modes
- incorporate their interactions in a fully nonlinear (and unique) way

Consequence:

Einstein's equations can serve to study nonequilibrium processes in strongly coupled $\mathcal{N}=4$ SYM and are an effective tool for exploring physics beyond hydrodynamics

Question:

In the case of boost-invariant plasma expansion can we unambigously determine

- i) whether these nonhydrodynamical modes are really important
- ii) whether it would be enough to consider just all-order viscous hydrodynamic

Einstein's equations in AdS/CFT

- contain all-order viscous hydrodynamic modes (with specific values of all transport coefficients)
- in addition contain the dynamics of genuine nonhydrodynamical modes
- incorporate their interactions in a fully nonlinear (and unique) way

Consequence:

Einstein's equations can serve to study nonequilibrium processes in strongly coupled $\mathcal{N}=4$ SYM and are an effective tool for exploring physics beyond hydrodynamics

Question

In the case of boost-invariant plasma expansion can we unambigously determine

- i) whether these nonhydrodynamical modes are really important
- ii) whether it would be enough to consider just all-order viscous hydrodynamic modes

Einstein's equations in AdS/CFT

- contain all-order viscous hydrodynamic modes (with specific values of all transport coefficients)
- in addition contain the dynamics of genuine nonhydrodynamical modes
- incorporate their interactions in a fully nonlinear (and unique) way

Consequence:

Einstein's equations can serve to study nonequilibrium processes in strongly coupled $\mathcal{N}=4$ SYM and are an effective tool for exploring physics beyond hydrodynamics

Question:

In the case of boost-invariant plasma expansion can we unambigously determine

- i) whether these nonhydrodynamical modes are really important
- ii) whether it would be enough to consider just all-order viscous hydrodynamic

Einstein's equations in AdS/CFT

- contain all-order viscous hydrodynamic modes (with specific values of all transport coefficients)
- in addition contain the dynamics of genuine nonhydrodynamical modes
- incorporate their interactions in a fully nonlinear (and unique) way

Consequence:

Einstein's equations can serve to study nonequilibrium processes in strongly coupled $\mathcal{N}=4$ SYM and are an effective tool for exploring physics beyond hydrodynamics

Question

In the case of boost-invariant plasma expansion can we unambigously determine i) whether these nonhydrodynamical modes are really important

- or
- ii) whether it would be enough to consider just all-order viscous hydrodynamic modes

Einstein's equations in AdS/CFT

- contain all-order viscous hydrodynamic modes (with specific values of all transport coefficients)
- in addition contain the dynamics of genuine nonhydrodynamical modes
- incorporate their interactions in a fully nonlinear (and unique) way

Consequence:

Einstein's equations can serve to study nonequilibrium processes in strongly coupled $\mathcal{N}=4$ SYM and are an effective tool for exploring physics beyond hydrodynamics

Question:

In the case of boost-invariant plasma expansion can we unambigously determine i) whether these nonhydrodynamical modes are really important

ii) whether it would be enough to consider just all-order viscous hydrodynamic modes

Einstein's equations in AdS/CFT

- contain all-order viscous hydrodynamic modes (with specific values of all transport coefficients)
- in addition contain the dynamics of genuine nonhydrodynamical modes
- incorporate their interactions in a fully nonlinear (and unique) way

Consequence:

Einstein's equations can serve to study nonequilibrium processes in strongly coupled $\mathcal{N}=4$ SYM and are an effective tool for exploring physics beyond hydrodynamics

Question:

In the case of boost-invariant plasma expansion can we unambigously determine

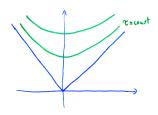
i) whether these nonhydrodynamical modes are really important

or

ii) whether it would be enough to consider just all-order viscous hydrodynamic modes

Bjorken '83

Assume a flow that is invariant under longitudinal boosts and does not depend on the transverse coordinates.



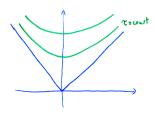
- In a conformal theory, $T^{\mu}_{\mu}=0$ and $\partial_{\mu}T^{\mu\nu}=0$ determine, under the above assumptions, the energy-momentum tensor completely in terms of a single function $\varepsilon(\tau)$, the energy density at mid-rapidity.
- The longitudinal and transverse pressures are then given by

$$p_L = -\varepsilon - \tau \frac{d}{d\tau} \varepsilon$$
 and $p_T = \varepsilon + \frac{1}{2} \tau \frac{d}{d\tau} \varepsilon$.

 \bullet From AdS/CFT one can derive the large τ expansion of $\varepsilon(\tau)$ for $\mathcal{N}=4$ plasma

Bjorken '83

Assume a flow that is invariant under longitudinal boosts and does not depend on the transverse coordinates.



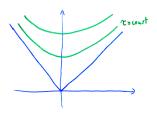
- In a conformal theory, $T^{\mu}_{\mu}=0$ and $\partial_{\mu}T^{\mu\nu}=0$ determine, under the above assumptions, the energy-momentum tensor completely in terms of a single function $\varepsilon(\tau)$, the energy density at mid-rapidity.
- The longitudinal and transverse pressures are then given by

$$p_L = -\varepsilon - \tau \frac{d}{d\tau} \varepsilon$$
 and $p_T = \varepsilon + \frac{1}{2} \tau \frac{d}{d\tau} \varepsilon$.

 \bullet From AdS/CFT one can derive the large τ expansion of $\varepsilon(\tau)$ for $\mathcal{N}=4$ plasma

Bjorken '83

Assume a flow that is invariant under longitudinal boosts and does not depend on the transverse coordinates.



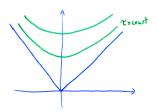
- In a conformal theory, $T^{\mu}_{\mu}=0$ and $\partial_{\mu}T^{\mu\nu}=0$ determine, under the above assumptions, the energy-momentum tensor completely in terms of a single function $\varepsilon(\tau)$, the energy density at mid-rapidity.
- The longitudinal and transverse pressures are then given by

$$p_L = -\varepsilon - \tau \frac{d}{d\tau} \varepsilon \quad \text{and} \quad p_T = \varepsilon + \frac{1}{2} \tau \frac{d}{d\tau} \varepsilon \,.$$

 \bullet From AdS/CFT one can derive the large τ expansion of $\varepsilon(\tau)$ for $\mathcal{N}=4$ plasma

Bjorken '83

Assume a flow that is invariant under longitudinal boosts and does not depend on the transverse coordinates.



- In a conformal theory, $T^{\mu}_{\mu}=0$ and $\partial_{\mu}T^{\mu\nu}=0$ determine, under the above assumptions, the energy-momentum tensor completely in terms of a single function $\varepsilon(\tau)$, the energy density at mid-rapidity.
- The longitudinal and transverse pressures are then given by

$$p_L = -\varepsilon - \tau \frac{d}{d\tau} \varepsilon \quad \text{and} \quad p_T = \varepsilon + \frac{1}{2} \tau \frac{d}{d\tau} \varepsilon \,.$$

• From AdS/CFT one can derive the large τ expansion of $\varepsilon(\tau)$ for $\mathcal{N}=4$ plasma

• Current result for large τ :

RJ, Peschanski; RJ; RJ, Heller; Heller

$$\varepsilon(\tau) = \frac{1}{\tau^{\frac{4}{3}}} - \frac{2}{2^{\frac{1}{2}}3^{\frac{3}{4}}} \frac{1}{\tau^2} + \frac{1 + 2\log 2}{12\sqrt{3}} \frac{1}{\tau^{\frac{8}{3}}} + \frac{-3 + 2\pi^2 + 24\log 2 - 24\log^2 2}{324 \cdot 2^{\frac{1}{2}}3^{\frac{1}{4}}} \frac{1}{\tau^{\frac{10}{3}}} + \dots$$

- Leading term perfect fluid behaviour second term 1^{st} order viscous hydrodynamics third term 2^{nd} order viscous hydrodynamics fourth term 3^{rd} order viscous hydrodynamics...
- ullet As we decrease au more and more dissipation will start to be important

• Current result for large τ :

RJ, Peschanski; RJ; RJ, Heller; Heller

$$\varepsilon(\tau) = \frac{1}{\tau^{\frac{4}{3}}} - \frac{2}{2^{\frac{1}{2}}3^{\frac{3}{4}}} \frac{1}{\tau^2} + \frac{1 + 2\log 2}{12\sqrt{3}} \frac{1}{\tau^{\frac{8}{3}}} + \frac{-3 + 2\pi^2 + 24\log 2 - 24\log^2 2}{324 \cdot 2^{\frac{1}{2}}3^{\frac{1}{4}}} \frac{1}{\tau^{\frac{10}{3}}} + \dots$$

- Leading term perfect fluid behaviour second term — 1st order viscous hydrodynamic third term — 2nd order viscous hydrodynamics
 - fourth term 3^{rd} order viscous hydrodynamics..
- ullet As we decrease au more and more dissipation will start to be important

• Current result for large τ :

RJ, Peschanski; RJ; RJ, Heller; Heller

$$\varepsilon(\tau) = \frac{1}{\tau^{\frac{4}{3}}} - \frac{2}{2^{\frac{1}{2}}3^{\frac{3}{4}}} \frac{1}{\tau^2} + \frac{1 + 2\log 2}{12\sqrt{3}} \frac{1}{\tau^{\frac{8}{3}}} + \frac{-3 + 2\pi^2 + 24\log 2 - 24\log^2 2}{324 \cdot 2^{\frac{1}{2}}3^{\frac{1}{4}}} \frac{1}{\tau^{\frac{10}{3}}} + \dots$$

- Leading term perfect fluid behaviour second term — 1st order viscous hydrodynamics third term — 2nd order viscous hydrodynamics fourth term — 3rd order viscous hydrodynamics...
- ullet As we decrease au more and more dissipation will start to be important

• Current result for large τ :

RJ, Peschanski; RJ; RJ, Heller; Heller

$$\varepsilon(\tau) = \frac{1}{\tau^{\frac{4}{3}}} - \frac{2}{2^{\frac{1}{2}}3^{\frac{3}{4}}} \frac{1}{\tau^2} + \frac{1 + 2\log 2}{12\sqrt{3}} \frac{1}{\tau^{\frac{8}{3}}} + \frac{-3 + 2\pi^2 + 24\log 2 - 24\log^2 2}{324 \cdot 2^{\frac{1}{2}}3^{\frac{1}{4}}} \frac{1}{\tau^{\frac{10}{3}}} + \dots$$

- Leading term perfect fluid behaviour second term — 1st order viscous hydrodynamics third term — 2nd order viscous hydrodynamics fourth term — 3rd order viscous hydrodynamics...
- ullet As we decrease au more and more dissipation will start to be important

• Current result for large τ :

RJ, Peschanski; RJ; RJ, Heller; Heller

$$\varepsilon(\tau) = \frac{1}{\tau^{\frac{4}{3}}} - \frac{2}{2^{\frac{1}{2}}3^{\frac{3}{4}}} \frac{1}{\tau^2} + \frac{1 + 2\log 2}{12\sqrt{3}} \frac{1}{\tau^{\frac{8}{3}}} + \frac{-3 + 2\pi^2 + 24\log 2 - 24\log^2 2}{324 \cdot 2^{\frac{1}{2}}3^{\frac{1}{4}}} \frac{1}{\tau^{\frac{10}{3}}} + \dots$$

- Leading term perfect fluid behaviour second term — 1st order viscous hydrodynamics third term — 2nd order viscous hydrodynamics fourth term — 3rd order viscous hydrodynamics...
- ullet As we decrease au more and more dissipation will start to be important

• Current result for large τ :

RJ, Peschanski; RJ; RJ, Heller; Heller

$$\varepsilon(\tau) = \frac{1}{\tau^{\frac{4}{3}}} - \frac{2}{2^{\frac{1}{2}}3^{\frac{3}{4}}} \frac{1}{\tau^2} + \frac{1 + 2\log 2}{12\sqrt{3}} \frac{1}{\tau^{\frac{8}{3}}} + \frac{-3 + 2\pi^2 + 24\log 2 - 24\log^2 2}{324 \cdot 2^{\frac{1}{2}}3^{\frac{1}{4}}} \frac{1}{\tau^{\frac{10}{3}}} + \dots$$

- Leading term perfect fluid behaviour second term — 1st order viscous hydrodynamics third term — 2nd order viscous hydrodynamics fourth term — 3rd order viscous hydrodynamics...
- ullet As we decrease au more and more dissipation will start to be important

• Current result for large τ :

RJ, Peschanski; RJ; RJ, Heller; Heller

$$\varepsilon(\tau) = \frac{1}{\tau^{\frac{4}{3}}} - \frac{2}{2^{\frac{1}{2}}3^{\frac{3}{4}}} \frac{1}{\tau^2} + \frac{1 + 2\log 2}{12\sqrt{3}} \frac{1}{\tau^{\frac{8}{3}}} + \frac{-3 + 2\pi^2 + 24\log 2 - 24\log^2 2}{324 \cdot 2^{\frac{1}{2}}3^{\frac{1}{4}}} \frac{1}{\tau^{\frac{10}{3}}} + \dots$$

- Leading term perfect fluid behaviour second term — 1st order viscous hydrodynamics third term — 2nd order viscous hydrodynamics fourth term — 3rd order viscous hydrodynamics...
- ullet As we decrease au more and more dissipation will start to be important

Method: Describe the time dependent evolving strongly coupled plasma system through a dual 5D geometry — given e.g. by

$$ds^2 = \frac{g_{\mu\nu}(x^{\rho},z)dx^{\mu}dx^{\nu} + dz^2}{z^2} \equiv g_{\alpha\beta}^{5D}dx^{\alpha}dx^{\beta}$$

i) use Einstein's equations for the time evolution

$$R_{lphaeta} - rac{1}{2}g_{lphaeta}^{5D}R - 6\,g_{lphaeta}^{5D} = 0$$

ii) read off $\langle T_{\mu\nu}(x^{
ho})
angle$ from the numerical metric $g_{\mu\nu}(x^{
ho},z)$

$$g_{\mu\nu}(x^{\rho},z) = \eta_{\mu\nu} + z^4 g_{\mu\nu}^{(4)}(x^{\rho}) + \dots$$
 $\langle T_{\mu\nu}(x^{\rho}) \rangle = \frac{N_c^2}{2\pi^2} \cdot g_{\mu\nu}^{(4)}(x^{\rho})$

Different setup from [Chesler, Yaffe]: we need evolution from $\tau=0$, energy-momentum conservation and freedom to consider generic initial conditions

Method: Describe the time dependent evolving strongly coupled plasma system through a dual 5D geometry — given e.g. by

$$ds^2 = rac{g_{\mu
u}(x^
ho,z)dx^\mu dx^
u + dz^2}{z^2} \equiv g_{lphaeta}^{5D}dx^lpha dx^eta$$

i) use Einstein's equations for the time evolution

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}^{5D}R - 6g_{\alpha\beta}^{5D} = 0$$

ii) read off $\langle T_{\mu\nu}(x^{\rho}) \rangle$ from the numerical metric $g_{\mu\nu}(x^{\rho},z)$

$$g_{\mu\nu}(x^{\rho},z) = \eta_{\mu\nu} + z^4 g_{\mu\nu}^{(4)}(x^{\rho}) + \dots$$
 $\langle T_{\mu\nu}(x^{\rho}) \rangle = \frac{N_c^2}{2\pi^2} \cdot g_{\mu\nu}^{(4)}(x^{\rho})$

Different setup from [Chesler,Yaffe]: we need evolution from $\tau=0$, energy-momentum conservation and freedom to consider generic initial conditions

Method: Describe the time dependent evolving strongly coupled plasma system through a dual 5D geometry — given e.g. by

$$ds^2 = \frac{g_{\mu\nu}(x^{\rho},z)dx^{\mu}dx^{\nu} + dz^2}{z^2} \equiv g_{\alpha\beta}^{5D}dx^{\alpha}dx^{\beta}$$

i) use Einstein's equations for the time evolution

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}^{5D}R - 6g_{\alpha\beta}^{5D} = 0$$

ii) read off $\langle T_{\mu\nu}(x^{\rho})\rangle$ from the numerical metric $g_{\mu\nu}(x^{\rho},z)$

$$g_{\mu\nu}(x^{\rho},z) = \eta_{\mu\nu} + z^4 g_{\mu\nu}^{(4)}(x^{\rho}) + \dots \qquad \langle T_{\mu\nu}(x^{\rho}) \rangle = \frac{N_c^2}{2\pi^2} \cdot g_{\mu\nu}^{(4)}(x^{\rho})$$

Different setup from [Chesler, Yaffe]: we need evolution from $\tau=0$, energy-momentum conservation and freedom to consider generic initial conditions

Method: Describe the time dependent evolving strongly coupled plasma system through a dual 5D geometry — given e.g. by

$$ds^2 = rac{g_{\mu
u}(x^{
ho},z)dx^{\mu}dx^{
u} + dz^2}{z^2} \equiv g_{lphaeta}^{5D}dx^{lpha}dx^{eta}$$

i) use Einstein's equations for the time evolution

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}^{5D}R - 6g_{\alpha\beta}^{5D} = 0$$

ii) read off $\langle T_{\mu\nu}(x^{\rho}) \rangle$ from the numerical metric $g_{\mu\nu}(x^{\rho},z)$

$$g_{\mu\nu}(x^{\rho},z) = \eta_{\mu\nu} + z^4 g_{\mu\nu}^{(4)}(x^{\rho}) + \dots$$
 $\langle T_{\mu\nu}(x^{\rho}) \rangle = \frac{N_c^2}{2\pi^2} \cdot g_{\mu\nu}^{(4)}(x^{\rho})$

Different setup from [Chesler, Yaffe]: we need evolution from $\tau = 0$, energy-momentum conservation and freedom to consider generic initial conditions

Method: Describe the time dependent evolving strongly coupled plasma system through a dual 5D geometry — given e.g. by

$$ds^2 = rac{g_{\mu
u}(x^{
ho},z)dx^{\mu}dx^{
u} + dz^2}{z^2} \equiv g_{\alpha\beta}^{5D}dx^{\alpha}dx^{\beta}$$

i) use Einstein's equations for the time evolution

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}^{5D}R - 6g_{\alpha\beta}^{5D} = 0$$

ii) read off $\langle T_{\mu\nu}(x^{\rho})\rangle$ from the numerical metric $g_{\mu\nu}(x^{\rho},z)$

$$g_{\mu\nu}(x^{\rho},z) = \eta_{\mu\nu} + z^4 g_{\mu\nu}^{(4)}(x^{\rho}) + \dots$$
 $\langle T_{\mu\nu}(x^{\rho}) \rangle = \frac{N_c^2}{2\pi^2} \cdot g_{\mu\nu}^{(4)}(x^{\rho})$

Different setup from [Chesler, Yaffe]: we need evolution from $\tau = 0$, energy-momentum conservation and freedom to consider generic initial conditions

Method: Describe the time dependent evolving strongly coupled plasma system through a dual 5D geometry — given e.g. by

$$ds^2 = rac{g_{\mu
u}(x^{
ho},z)dx^{\mu}dx^{
u} + dz^2}{z^2} \equiv g_{lphaeta}^{5D}dx^{lpha}dx^{eta}$$

i) use Einstein's equations for the time evolution

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}^{5D}R - 6g_{\alpha\beta}^{5D} = 0$$

ii) read off $\langle T_{\mu\nu}(x^{\rho})\rangle$ from the numerical metric $g_{\mu\nu}(x^{\rho},z)$

$$g_{\mu\nu}(x^{\rho},z) = \eta_{\mu\nu} + z^4 g_{\mu\nu}^{(4)}(x^{\rho}) + \dots$$
 $\langle T_{\mu\nu}(x^{\rho}) \rangle = \frac{N_c^2}{2\pi^2} \cdot g_{\mu\nu}^{(4)}(x^{\rho})$

Different setup from [Chesler, Yaffe]: we need evolution from $\tau=0$, energy-momentum conservation and freedom to consider generic initial conditions

Method: Describe the time dependent evolving strongly coupled plasma system through a dual 5D geometry — given e.g. by

$$ds^2 = \frac{g_{\mu\nu}(x^{\rho}, z)dx^{\mu}dx^{\nu} + dz^2}{z^2} \equiv g_{\alpha\beta}^{5D}dx^{\alpha}dx^{\beta}$$

i) use Einstein's equations for the time evolution

$$R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}^{5D}R - 6g_{\alpha\beta}^{5D} = 0$$

ii) read off $\langle T_{\mu\nu}(x^{
ho}) \rangle$ from the numerical metric $g_{\mu\nu}(x^{
ho},z)$

$$g_{\mu\nu}(x^{\rho},z) = \eta_{\mu\nu} + z^4 g_{\mu\nu}^{(4)}(x^{\rho}) + \dots$$
 $\langle T_{\mu\nu}(x^{\rho}) \rangle = \frac{N_c^2}{2\pi^2} \cdot g_{\mu\nu}^{(4)}(x^{\rho})$

Different setup from [Chesler, Yaffe]: we need evolution from $\tau=0$, energy-momentum conservation and freedom to consider generic initial conditions

Results

- We have considered 20+8 initial conditions, each given by a choice of the metric coefficient $c(\tau=0,u)$.
- We have chosen quite different looking profiles e.g.

$$c_{1}(u) = \cosh u$$

$$c_{3}(u) = 1 + \frac{1}{2}u^{2}$$

$$c_{7}(u) = 1 + \frac{\frac{1}{2}u^{2}}{1 + \frac{3}{2}u^{2}}$$

$$c_{10}(u) = 1 + \frac{1}{2}u^{2}e^{-\frac{u}{2}}$$

$$c_{15}(u) = 1 + \frac{1}{2}u^{2}e^{u}$$

$$c_{19}(u) = 1 + \frac{1}{2}\tanh^{2}\left(u + \frac{1}{25}u^{2}\right)$$

Results

- We have considered 20+8 initial conditions, each given by a choice of the metric coefficient $c(\tau = 0, u)$.
- We have chosen quite different looking profiles e.g.

$$c_{1}(u) = \cosh u$$

$$c_{3}(u) = 1 + \frac{1}{2}u^{2}$$

$$c_{7}(u) = 1 + \frac{\frac{1}{2}u^{2}}{1 + \frac{3}{2}u^{2}}$$

$$c_{10}(u) = 1 + \frac{1}{2}u^{2}e^{-\frac{u}{2}}$$

$$c_{15}(u) = 1 + \frac{1}{2}u^{2}e^{u}$$

$$c_{19}(u) = 1 + \frac{1}{2}\tanh^{2}\left(u + \frac{1}{25}u^{2}\right)$$

Results

- We have considered 20+8 initial conditions, each given by a choice of the metric coefficient $c(\tau = 0, u)$.
- We have chosen quite different looking profiles e.g.

$$c_{1}(u) = \cosh u$$

$$c_{3}(u) = 1 + \frac{1}{2}u^{2}$$

$$c_{7}(u) = 1 + \frac{\frac{1}{2}u^{2}}{1 + \frac{3}{2}u^{2}}$$

$$c_{10}(u) = 1 + \frac{1}{2}u^{2}e^{-\frac{u}{2}}$$

$$c_{15}(u) = 1 + \frac{1}{2}u^{2}e^{u}$$

$$c_{19}(u) = 1 + \frac{1}{2}\tanh^{2}\left(u + \frac{1}{25}u^{2}\right)$$

- Introduce the dimensionless quantity $w(\tau) \equiv T_{eff}(\tau) \cdot \tau$
- Viscous hydrodynamics (up to any order in the gradient expansion) leads to equations of motion of the form

$$\frac{\tau}{w}\frac{d}{d\tau}w = \frac{F_{hydro}(w)}{w}$$

$$\frac{F_{hydro}(w)}{w} = \frac{2}{3} + \frac{1}{9\pi w} + \frac{1 - \log 2}{27\pi^2 w^2} + \frac{15 - 2\pi^2 - 45\log 2 + 24\log^2 2}{972\pi^3 w^3} + \dots$$

- Therefore if plasma dynamics would be given by viscous hydrodynamics (even to arbitrary high order) a plot of $F(w) \equiv \frac{\tau}{w} \frac{d}{d\tau} w$ as a function of w would be a single curve for all the initial conditions
- Genuine nonequilibrium dynamics would, in contrast, lead to several curves...

- Introduce the dimensionless quantity $w(\tau) \equiv T_{eff}(\tau) \cdot \tau$
- Viscous hydrodynamics (up to any order in the gradient expansion) leads to equations of motion of the form

$$\frac{\tau}{w}\frac{d}{d\tau}w = \frac{F_{hydro}(w)}{w}$$

$$\frac{F_{hydro}(w)}{w} = \frac{2}{3} + \frac{1}{9\pi w} + \frac{1 - \log 2}{27\pi^2 w^2} + \frac{15 - 2\pi^2 - 45\log 2 + 24\log^2 2}{972\pi^3 w^3} + \dots$$

- Therefore if plasma dynamics would be given by viscous hydrodynamics (even to arbitrary high order) a plot of $F(w) \equiv \frac{\tau}{w} \frac{d}{d\tau} w$ as a function of w would be a single curve for all the initial conditions
- Genuine nonequilibrium dynamics would, in contrast, lead to several curves...

- Introduce the dimensionless quantity $w(au) \equiv T_{\it eff}(au) \cdot au$
- Viscous hydrodynamics (up to any order in the gradient expansion) leads to equations of motion of the form

$$\frac{\tau}{w}\frac{d}{d\tau}w = \frac{F_{hydro}(w)}{w}$$

$$\frac{F_{hydro}(w)}{w} = \frac{2}{3} + \frac{1}{9\pi w} + \frac{1 - \log 2}{27\pi^2 w^2} + \frac{15 - 2\pi^2 - 45\log 2 + 24\log^2 2}{972\pi^3 w^3} + \dots$$

- Therefore if plasma dynamics would be given by viscous hydrodynamics (even to arbitrary high order) a plot of $F(w) \equiv \frac{\tau}{w} \frac{d}{d\tau} w$ as a function of w would be a single curve for all the initial conditions
- Genuine nonequilibrium dynamics would, in contrast, lead to several curves...

- Introduce the dimensionless quantity $w(\tau) \equiv T_{eff}(\tau) \cdot \tau$
- Viscous hydrodynamics (up to any order in the gradient expansion) leads to equations of motion of the form

$$\frac{\tau}{w}\frac{d}{d\tau}w = \frac{F_{hydro}(w)}{w}$$

$$\frac{F_{hydro}(w)}{w} = \frac{2}{3} + \frac{1}{9\pi w} + \frac{1 - \log 2}{27\pi^2 w^2} + \frac{15 - 2\pi^2 - 45\log 2 + 24\log^2 2}{972\pi^3 w^3} + \dots$$

- Therefore if plasma dynamics would be given by viscous hydrodynamics (even to arbitrary high order) a plot of $F(w) \equiv \frac{\tau}{w} \frac{d}{d\tau} w$ as a function of w would be a single curve for all the initial conditions
- Genuine nonequilibrium dynamics would, in contrast, lead to several curves...

- Introduce the dimensionless quantity $w(au) \equiv T_{\it eff}(au) \cdot au$
- Viscous hydrodynamics (up to any order in the gradient expansion) leads to equations of motion of the form

$$\frac{\tau}{w}\frac{d}{d\tau}w = \frac{F_{hydro}(w)}{w}$$

$$\frac{F_{hydro}(w)}{w} = \frac{2}{3} + \frac{1}{9\pi w} + \frac{1 - \log 2}{27\pi^2 w^2} + \frac{15 - 2\pi^2 - 45\log 2 + 24\log^2 2}{972\pi^3 w^3} + \dots$$

- Therefore if plasma dynamics would be given by viscous hydrodynamics (even to arbitrary high order) a plot of $F(w) \equiv \frac{\tau}{w} \frac{d}{d\tau} w$ as a function of w would be a single curve for all the initial conditions
- Genuine nonequilibrium dynamics would, in contrast, lead to several curves...

- Introduce the dimensionless quantity $w(au) \equiv T_{\it eff}(au) \cdot au$
- Viscous hydrodynamics (up to any order in the gradient expansion) leads to equations of motion of the form

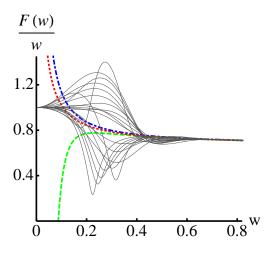
$$\frac{\tau}{w}\frac{d}{d\tau}w = \frac{F_{hydro}(w)}{w}$$

$$\frac{F_{hydro}(w)}{w} = \frac{2}{3} + \frac{1}{9\pi w} + \frac{1 - \log 2}{27\pi^2 w^2} + \frac{15 - 2\pi^2 - 45\log 2 + 24\log^2 2}{972\pi^3 w^3} + \dots$$

- Therefore if plasma dynamics would be given by viscous hydrodynamics (even to arbitrary high order) a plot of $F(w) \equiv \frac{\tau}{w} \frac{d}{d\tau} w$ as a function of w would be a single curve for all the initial conditions
- Genuine nonequilibrium dynamics would, in contrast, lead to several curves...

A plot of F(w)/w versus w for various initial data

A plot of F(w)/w versus w for various initial data



 An observable sensitive to the details of the dissipative dynamics (e.g. hydrodynamics) is the pressure anisotropy

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8$$

ullet For a perfect fluid $\Delta p_L \equiv 0$. For a sample initial profile we get

- For $w = T_{eff} \cdot \tau > 0.63$ we get a very good agreement with viscous hydrodynamics
- Still sizable deviation from isotropy which is nevertheless completely due to viscous flow.

 An observable sensitive to the details of the dissipative dynamics (e.g. hydrodynamics) is the pressure anisotropy

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8$$

• For a perfect fluid $\Delta p_L \equiv 0$. For a sample initial profile we get

- For $w = T_{eff} \cdot \tau > 0.63$ we get a very good agreement with viscous hydrodynamics
- Still sizable deviation from isotropy which is nevertheless completely due to viscous flow.

 An observable sensitive to the details of the dissipative dynamics (e.g. hydrodynamics) is the pressure anisotropy

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8$$

• For a perfect fluid $\Delta p_L \equiv 0$. For a sample initial profile we get

- For $w=T_{\rm eff}\cdot \tau>0.63$ we get a very good agreement with viscous hydrodynamics
- Still sizable deviation from isotropy which is nevertheless completely due to viscous flow.

 An observable sensitive to the details of the dissipative dynamics (e.g. hydrodynamics) is the pressure anisotropy

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8$$

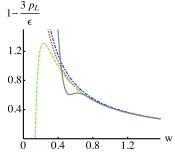
• For a perfect fluid $\Delta p_L \equiv 0$. For a sample initial profile we get

- For $w = T_{eff} \cdot \tau > 0.63$ we get a very good agreement with viscous hydrodynamics
- Still sizable deviation from isotropy which is nevertheless completely due to viscous flow.

 An observable sensitive to the details of the dissipative dynamics (e.g. hydrodynamics) is the pressure anisotropy

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8$$

ullet For a perfect fluid $\Delta p_L \equiv 0$. For a sample initial profile we get

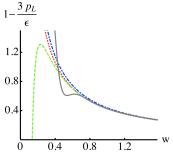


- For $w = T_{\it eff} \cdot \tau > 0.63$ we get a very good agreement with viscous hydrodynamics
- Still sizable deviation from isotropy which is nevertheless completely due to viscous flow

 An observable sensitive to the details of the dissipative dynamics (e.g. hydrodynamics) is the pressure anisotropy

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8$$

ullet For a perfect fluid $\Delta p_L \equiv 0$. For a sample initial profile we get



- For $w=T_{\it eff}\cdot \tau>0.63$ we get a very good agreement with viscous hydrodynamics
- Still sizable deviation from isotropy which is nevertheless completely due to viscous flow.

 An observable sensitive to the details of the dissipative dynamics (e.g. hydrodynamics) is the pressure anisotropy

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8$$

ullet For a perfect fluid $\Delta p_L \equiv 0$. For a sample initial profile we get



- For $w = T_{\it eff} \cdot \tau > 0.63$ we get a very good agreement with viscous hydrodynamics
- Still sizable deviation from isotropy which is nevertheless completely due to viscous flow.

- The AdS/CFT prescription for $\langle T_{\mu\nu} \rangle$ is on a very solid ground in the framework of the AdS/CFT correspondence in contrast entropy, especially for nonequillibrium systems is much less understood
- It is even not clear whether an exact *local* notion makes sense on the QFT side...
- However, phenomenological notion of local entropy density is widely used in (dissipative) hydrodynamics
- On the AdS side entropy is obtained from the area element of a horizon but we have to choose
 - the kind of horizon (currently: apparent horizon not event horizon)
 - we have to map a point on the boundary to an appropriate point in the bulk (using null geodesics — but in general there are ambiguities)
- For the boost-invariant setup fortunately the null geodesic ambiguities are absent as well as ambiguities associated with defining the apparent horizon...

- The AdS/CFT prescription for $\langle T_{\mu\nu} \rangle$ is on a very solid ground in the framework of the AdS/CFT correspondence in contrast entropy, especially for nonequillibrium systems is much less understood
- It is even not clear whether an exact *local* notion makes sense on the QFT side...
- However, phenomenological notion of local entropy density is widely used in (dissipative) hydrodynamics
- On the AdS side entropy is obtained from the area element of a horizon but we have to choose
 - the kind of horizon (currently: apparent horizon not event horizon)
 - we have to map a point on the boundary to an appropriate point in the bulk (using null geodesics — but in general there are ambiguities)
- For the boost-invariant setup fortunately the null geodesic ambiguities are absent as well as ambiguities associated with defining the apparent horizon...

- The AdS/CFT prescription for $\langle T_{\mu\nu} \rangle$ is on a very solid ground in the framework of the AdS/CFT correspondence in contrast entropy, especially for nonequillibrium systems is much less understood
- It is even not clear whether an exact *local* notion makes sense on the QFT side...
- However, phenomenological notion of local entropy density is widely used in (dissipative) hydrodynamics
- On the AdS side entropy is obtained from the area element of a horizon but we have to choose
 - the kind of horizon (currently: apparent horizon not event horizon)
 - we have to map a point on the boundary to an appropriate point in the bulk (using null geodesics — but in general there are ambiguities)
- For the boost-invariant setup fortunately the null geodesic ambiguities are absent as well as ambiguities associated with defining the apparent horizon...

- The AdS/CFT prescription for $\langle T_{\mu\nu} \rangle$ is on a very solid ground in the framework of the AdS/CFT correspondence in contrast entropy, especially for nonequillibrium systems is much less understood
- It is even not clear whether an exact *local* notion makes sense on the QFT side...
- However, phenomenological notion of local entropy density is widely used in (dissipative) hydrodynamics
- On the AdS side entropy is obtained from the area element of a horizon but we have to choose
 - the kind of horizon (currently: apparent horizon not event horizon)
 - we have to map a point on the boundary to an appropriate point in the bulk (using null geodesics — but in general there are ambiguities)
- For the boost-invariant setup fortunately the null geodesic ambiguities are absent as well as ambiguities associated with defining the apparent horizon...

- The AdS/CFT prescription for $\langle T_{\mu\nu} \rangle$ is on a very solid ground in the framework of the AdS/CFT correspondence in contrast entropy, especially for nonequillibrium systems is much less understood
- It is even not clear whether an exact *local* notion makes sense on the QFT side...
- However, phenomenological notion of local entropy density is widely used in (dissipative) hydrodynamics
- On the AdS side entropy is obtained from the area element of a horizon but we have to choose
 - the kind of horizon (currently: apparent horizon not event horizon)
 - we have to map a point on the boundary to an appropriate point in the bulk (using null geodesics — but in general there are ambiguities)
- For the boost-invariant setup fortunately the null geodesic ambiguities are absent as well as ambiguities associated with defining the apparent horizon...

- The AdS/CFT prescription for $\langle T_{\mu\nu} \rangle$ is on a very solid ground in the framework of the AdS/CFT correspondence in contrast entropy, especially for nonequillibrium systems is much less understood
- It is even not clear whether an exact *local* notion makes sense on the QFT side...
- However, phenomenological notion of local entropy density is widely used in (dissipative) hydrodynamics
- On the AdS side entropy is obtained from the area element of a horizon but we have to choose
 - the kind of horizon (currently: apparent horizon not event horizon)
 - we have to map a point on the boundary to an appropriate point in the bulk (using null geodesics — but in general there are ambiguities)
- For the boost-invariant setup fortunately the null geodesic ambiguities are absent as well as ambiguities associated with defining the apparent horizon...

- The AdS/CFT prescription for $\langle T_{\mu\nu} \rangle$ is on a very solid ground in the framework of the AdS/CFT correspondence in contrast entropy, especially for nonequillibrium systems is much less understood
- It is even not clear whether an exact *local* notion makes sense on the QFT side...
- However, phenomenological notion of local entropy density is widely used in (dissipative) hydrodynamics
- On the AdS side entropy is obtained from the area element of a horizon but we have to choose
 - the kind of horizon (currently: apparent horizon not event horizon)
 - we have to map a point on the boundary to an appropriate point in the bulk (using null geodesics — but in general there are ambiguities)
- For the boost-invariant setup fortunately the null geodesic ambiguities are absent as well as ambiguities associated with defining the apparent horizon...

- The AdS/CFT prescription for $\langle T_{\mu\nu} \rangle$ is on a very solid ground in the framework of the AdS/CFT correspondence in contrast entropy, especially for nonequillibrium systems is much less understood
- It is even not clear whether an exact local notion makes sense on the QFT side...
- However, phenomenological notion of local entropy density is widely used in (dissipative) hydrodynamics
- On the AdS side entropy is obtained from the area element of a horizon but we have to choose
 - the kind of horizon (currently: apparent horizon not event horizon)
 - we have to map a point on the boundary to an appropriate point in the bulk (using null geodesics — but in general there are ambiguities)
- For the boost-invariant setup fortunately the null geodesic ambiguities are absent as well as ambiguities associated with defining the apparent horizon...

- The AdS/CFT prescription for $\langle T_{\mu\nu} \rangle$ is on a very solid ground in the framework of the AdS/CFT correspondence in contrast entropy, especially for nonequillibrium systems is much less understood
- It is even not clear whether an exact *local* notion makes sense on the QFT side...
- However, phenomenological notion of local entropy density is widely used in (dissipative) hydrodynamics
- On the AdS side entropy is obtained from the area element of a horizon but we have to choose
 - the kind of horizon (currently: apparent horizon not event horizon)
 - we have to map a point on the boundary to an appropriate point in the bulk (using null geodesics — but in general there are ambiguities)
- For the boost-invariant setup fortunately the null geodesic ambiguities are absent as well as ambiguities associated with defining the apparent horizon...

- The AdS/CFT prescription for $\langle T_{\mu\nu} \rangle$ is on a very solid ground in the framework of the AdS/CFT correspondence in contrast entropy, especially for nonequillibrium systems is much less understood
- It is even not clear whether an exact *local* notion makes sense on the QFT side...
- However, phenomenological notion of local entropy density is widely used in (dissipative) hydrodynamics
- On the AdS side entropy is obtained from the area element of a horizon but we have to choose
 - the kind of horizon (currently: apparent horizon not event horizon)
 - we have to map a point on the boundary to an appropriate point in the bulk (using null geodesics — but in general there are ambiguities)
- For the boost-invariant setup fortunately the null geodesic ambiguities are absent as well as ambiguities associated with defining the apparent horizon...

• We consider the entropy per unit rapidity and unit transverse area in units of initial temperature introducing a dimensionless entropy density *s* through

$$s = \frac{S}{\frac{1}{2}N_c^2\pi^2T_{\text{eff}}^2(0)}$$

 We consider the entropy per unit rapidity and unit transverse area in units of initial temperature introducing a dimensionless entropy density s through

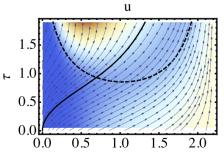
$$s = \frac{S}{\frac{1}{2}N_c^2\pi^2T_{eff}^2(0)}$$

 We consider the entropy per unit rapidity and unit transverse area in units of initial temperature introducing a dimensionless entropy density s through

$$s = \frac{S}{\frac{1}{2}N_c^2\pi^2T_{eff}^2(0)}$$

 We consider the entropy per unit rapidity and unit transverse area in units of initial temperature introducing a dimensionless entropy density s through

$$s = \frac{S}{\frac{1}{2}N_c^2\pi^2T_{eff}^2(0)}$$



$$T_{\mathrm{eff}}(\tau) \! = \! \frac{\mathrm{\Lambda}}{(\mathrm{\Lambda}\tau)^{1/3}} \left\{ 1 \! - \! \frac{1}{6\pi(\mathrm{\Lambda}\tau)^{2/3}} \! + \! \frac{-1\! +\! \log 2}{36\pi^2(\mathrm{\Lambda}\tau)^{4/3}} \! + \! \frac{-21\! +\! 2\pi^2 \! +\! 51\log 2 \! -\! 24\log^2 2}{1944\pi^3(\mathrm{\Lambda}\tau)^2 \! +\! \ldots} \right\}$$

- ullet We obtain the Λ parameter from a fit to the late time tail of our numerical data.
- Knowing Λ , we may use the standard perfect fluid expression for the entropy at $\tau=\infty$

$$s_{final} = rac{\Lambda^2}{T_{eff}^2(0)}$$

$$T_{\rm eff}(\tau) = \frac{{\textstyle \bigwedge}}{({\textstyle \Lambda}\tau)^{1/3}} \left\{ 1 - \frac{1}{6\pi({\textstyle \Lambda}\tau)^{2/3}} + \frac{-1 + \log 2}{36\pi^2({\textstyle \Lambda}\tau)^{4/3}} + \frac{-21 + 2\pi^2 + 51 \log 2 - 24 \log^2 2}{1944\pi^3({\textstyle \Lambda}\tau)^2 + \dots} \right\}$$

- ullet We obtain the Λ parameter from a fit to the late time tail of our numerical data.
- Knowing Λ , we may use the standard perfect fluid expression for the entropy at $\tau=\infty$

$$s_{final} = rac{\Lambda^2}{T_{eff}^2(0)}$$

$$T_{\rm eff}(\tau) = \frac{{\textstyle \bigwedge}}{({\textstyle \Lambda}\tau)^{1/3}} \left\{ 1 - \frac{1}{6\pi({\textstyle \Lambda}\tau)^{2/3}} + \frac{-1 + \log 2}{36\pi^2({\textstyle \Lambda}\tau)^{4/3}} + \frac{-21 + 2\pi^2 + 51 \log 2 - 24 \log^2 2}{1944\pi^3({\textstyle \Lambda}\tau)^2 + \dots} \right\}$$

- ullet We obtain the Λ parameter from a fit to the late time tail of our numerical data.
- Knowing Λ , we may use the standard perfect fluid expression for the entropy at $\tau=\infty$

$$s_{final} = rac{\Lambda^2}{T_{
m eff}^2(0)}$$

$$T_{\rm eff}(\tau) = \frac{{\textstyle \bigwedge}}{({\textstyle \bigwedge}\tau)^{1/3}} \left\{ 1 - \frac{1}{6\pi({\textstyle \bigwedge}\tau)^{2/3}} + \frac{-1 + \log 2}{36\pi^2({\textstyle \bigwedge}\tau)^{4/3}} + \frac{-21 + 2\pi^2 + 51 \log 2 - 24 \log^2 2}{1944\pi^3({\textstyle \bigwedge}\tau)^2 + \ldots} \right\}$$

- We obtain the Λ parameter from a fit to the late time tail of our numerical data.
- Knowing Λ , we may use the standard perfect fluid expression for the entropy at $\tau=\infty$

$$s_{final} = \frac{\Lambda^2}{T_{eff}^2(0)}$$

Consider the entropy production $s_{final} - s_{initial}$ as a function of $s_{initial}$

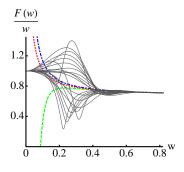
Recall the complicated nonequilibrium dynamics...

Consider the entropy production $s_{final} - s_{initial}$ as a function of $s_{initial}$

Recall the complicated nonequilibrium dynamics...

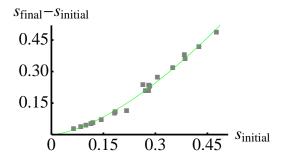
Consider the entropy production $s_{final} - s_{initial}$ as a function of $s_{initial}$

Recall the complicated nonequilibrium dynamics...



Consider the entropy production $s_{final} - s_{initial}$ as a function of $s_{initial}$

Yet the entropy production depends in surprisingly clean way on sinitial...

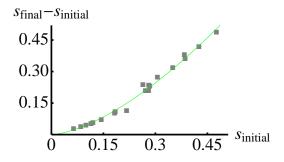


The curve is a phenomenological fit

$$s_{ extit{final}} - s_{ extit{initial}} \sim 1.59 \cdot s_{ extit{initial}}^{1.55}$$

Consider the entropy production $s_{final} - s_{initial}$ as a function of $s_{initial}$

Yet the entropy production depends in surprisingly clean way on sinitial...



The curve is a phenomenological fit

$$s_{final} - s_{initial} \sim 1.59 \cdot s_{initial}^{1.55}$$

- The initial entropy turns out to be a key characterization of the initial state
- There seems to be a lot of hidden regularity in the nonequilibrium dynamics
- We will show below that the initial entropy also characterizes the characteristics of the transition to hydrodynamics (≡ thermalization)
- The initial entropy is also strongly correlated with the position of the Fefferman-Graham coordinate singularity corresponding to the initial data

- The initial entropy turns out to be a key characterization of the initial state
- There seems to be a lot of hidden regularity in the nonequilibrium dynamics
- We will show below that the initial entropy also characterizes the characteristics of the transition to hydrodynamics (≡ thermalization)
- The initial entropy is also strongly correlated with the position of the Fefferman-Graham coordinate singularity corresponding to the initial data

- The initial entropy turns out to be a key characterization of the initial state
- There seems to be a lot of hidden regularity in the nonequilibrium dynamics
- We will show below that the initial entropy also characterizes the characteristics of the transition to hydrodynamics (
 = thermalization)
- The initial entropy is also strongly correlated with the position of the Fefferman-Graham coordinate singularity corresponding to the initial data

- The initial entropy turns out to be a key characterization of the initial state
- There seems to be a lot of hidden regularity in the nonequilibrium dynamics
- We will show below that the initial entropy also characterizes the characteristics of the transition to hydrodynamics (
 = thermalization)
- The initial entropy is also strongly correlated with the position of the Fefferman-Graham coordinate singularity corresponding to the initial data

- The initial entropy turns out to be a key characterization of the initial state
- There seems to be a lot of hidden regularity in the nonequilibrium dynamics
- We will show below that the initial entropy also characterizes the characteristics of the transition to hydrodynamics (
 = thermalization)
- The initial entropy is also strongly correlated with the position of the Fefferman-Graham coordinate singularity corresponding to the initial data

A numerical criterion for thermalization

- We want to study systematically the properties of the plasma at the point when the dynamics becomes describable by viscous hydrodynamics...
- We adopted a numerical criterion for thermalization

$$\left\| \frac{\tau \frac{d}{d\tau} w}{F_{hydro}^{3rd \text{ order}}(w)} - 1 \right\| < 0.005$$

- We looked at the following features of thermalization:
 - ① the dimensionless quantity $w = T_{eff} \cdot \tau$
 - 2 The thermalization time in units of initial temperature $\tau_{th} \cdot T_{eff}(0)$
 - ① The temperature at thermalization relative to the initial temperature $T_{th}/T_{eff}(0)$

A numerical criterion for thermalization

- We want to study systematically the properties of the plasma at the point when the dynamics becomes describable by viscous hydrodynamics...
- We adopted a numerical criterion for thermalization

$$\left\| \frac{\tau \frac{d}{d\tau} w}{F_{hydro}^{3rd \ order}(w)} - 1 \right\| < 0.005$$

- We looked at the following features of thermalization:
 - ① the dimensionless quantity $w = T_{eff} \cdot \tau$
 - 2 The thermalization time in units of initial temperature $\tau_{th} \cdot T_{eff}(0)$
 - 3 The temperature at thermalization relative to the initial temperature $T_{th}/T_{eff}(0)$

- We want to study systematically the properties of the plasma at the point when the dynamics becomes describable by viscous hydrodynamics...
- We adopted a numerical criterion for thermalization

$$\left\| \frac{\tau \frac{d}{d\tau} w}{F_{hydro}^{3^{rd} \ order}(w)} - 1 \right\| < 0.005$$

- We looked at the following features of thermalization:
 - ① the dimensionless quantity $w = T_{eff}$.
 - 2 The thermalization time in units of initial temperature $\tau_{th} \cdot T_{eff}(0)$
 - 3 The temperature at thermalization relative to the initial temperature $T_{th}/T_{eff}(0)$

- We want to study systematically the properties of the plasma at the point when the dynamics becomes describable by viscous hydrodynamics...
- We adopted a numerical criterion for thermalization

$$\left\| \frac{\tau \frac{d}{d\tau} w}{F_{hydro}^{3^{rd} \ order}(w)} - 1 \right\| < 0.005$$

- We looked at the following features of thermalization:
 - ① the dimensionless quantity $w = T_{eff} \cdot \tau$
 - 2 The thermalization time in units of initial temperature $\tau_{th} \cdot T_{eff}(0)$
 - ① The temperature at thermalization relative to the initial temperature $T_{th}/T_{eff}(0)$

- We want to study systematically the properties of the plasma at the point when the dynamics becomes describable by viscous hydrodynamics...
- We adopted a numerical criterion for thermalization

$$\left\| \frac{\tau \frac{d}{d\tau} w}{F_{hydro}^{3^{rd} \ order}(w)} - 1 \right\| < 0.005$$

- We looked at the following features of thermalization:
 - 1 the dimensionless quantity $w = T_{\rm eff} \cdot \tau$
 - 2 The thermalization time in units of initial temperature $\tau_{th} \cdot T_{eff}(0)$
 - ① The temperature at thermalization relative to the initial temperature $T_{th}/T_{eff}(0)$

- We want to study systematically the properties of the plasma at the point when the dynamics becomes describable by viscous hydrodynamics...
- We adopted a numerical criterion for thermalization

$$\left\| \frac{\tau \frac{d}{d\tau} w}{F_{hydro}^{3^{rd} \ order}(w)} - 1 \right\| < 0.005$$

- We looked at the following features of thermalization:
 - 1 the dimensionless quantity $w = T_{\rm eff} \cdot \tau$
 - 2 The thermalization time in units of initial temperature $\tau_{th} \cdot T_{eff}(0)$
 - ① The temperature at thermalization relative to the initial temperature $T_{th}/T_{eff}(0)$

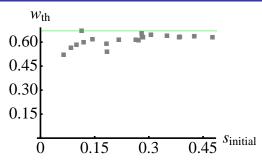
- We want to study systematically the properties of the plasma at the point when the dynamics becomes describable by viscous hydrodynamics...
- We adopted a numerical criterion for thermalization

$$\left\| \frac{\tau \frac{d}{d\tau} w}{F_{hydro}^{3^{rd} \ order}(w)} - 1 \right\| < 0.005$$

- We looked at the following features of thermalization:
 - 1 the dimensionless quantity $w = T_{eff} \cdot \tau$
 - 2 The thermalization time in units of initial temperature $\tau_{th} \cdot T_{eff}(0)$
 - **3** The temperature at thermalization relative to the initial temperature $T_{th}/T_{eff}(0)$

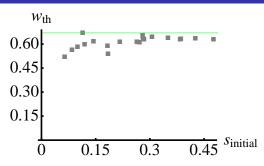
- w at thermalization is approximately constant and for the initial profiles considered does not exceed w=0.67. It seems to decrease for profiles with smaller initial entropy
- N.B. sample initial conditions for hydrodynamics at RHIC ($\tau_0 = 0.25 \, fm$, $T_0 = 500 \, MeV$) assumed in [Broniowski, Chojnacki, Florkowski, Kisiel] correspond to w = 0.63
- The pressure anisotropy at thermalization is still sizable

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8 \simeq 12F_{hydro}(w) - 8 \sim 0.72 - 0.73$$



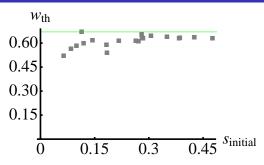
- w at thermalization is approximately constant and for the initial profiles considered does not exceed w=0.67. It seems to decrease for profiles with smaller initial entropy
- N.B. sample initial conditions for hydrodynamics at RHIC ($\tau_0=0.25~fm$, $T_0=500~MeV$) assumed in [Broniowski, Chojnacki, Florkowski, Kisiel] correspond to w=0.63
- The pressure anisotropy at thermalization is still sizable

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8 \simeq 12F_{hydro}(w) - 8 \sim 0.72 - 0.73$$



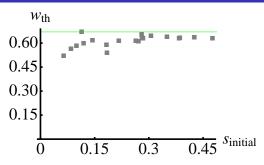
- w at thermalization is approximately constant and for the initial profiles considered does not exceed w=0.67. It seems to decrease for profiles with smaller initial entropy
- N.B. sample initial conditions for hydrodynamics at RHIC ($\tau_0 = 0.25 \, fm$, $T_0 = 500 \, MeV$) assumed in [Broniowski, Chojnacki, Florkowski, Kisiel] correspond to w = 0.63
- The pressure anisotropy at thermalization is still sizable

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8 \simeq 12F_{hydro}(w) - 8 \sim 0.72 - 0.73$$



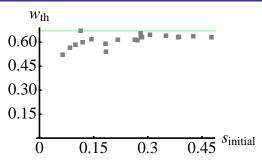
- w at thermalization is approximately constant and for the initial profiles considered does not exceed w=0.67. It seems to decrease for profiles with smaller initial entropy
- N.B. sample initial conditions for hydrodynamics at RHIC ($\tau_0 = 0.25 \, fm$, $T_0 = 500 \, MeV$) assumed in [Broniowski, Chojnacki, Florkowski, Kisiel] correspond to w = 0.63
- The pressure anisotropy at thermalization is still sizable

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8 \simeq 12F_{hydro}(w) - 8 \sim 0.72 - 0.73$$



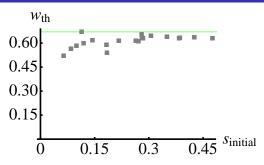
- w at thermalization is approximately constant and for the initial profiles considered does not exceed w=0.67. It seems to decrease for profiles with smaller initial entropy
- N.B. sample initial conditions for hydrodynamics at RHIC ($\tau_0 = 0.25 \, fm$, $T_0 = 500 \, MeV$) assumed in [Broniowski, Chojnacki, Florkowski, Kisiel] correspond to w = 0.63
- The pressure anisotropy at thermalization is still sizable

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8 \simeq 12F_{hydro}(w) - 8 \sim 0.72 - 0.73$$



- w at thermalization is approximately constant and for the initial profiles considered does not exceed w=0.67. It seems to decrease for profiles with smaller initial entropy
- N.B. sample initial conditions for hydrodynamics at RHIC ($\tau_0 = 0.25 \, fm$, $T_0 = 500 \, MeV$) assumed in [Broniowski, Chojnacki, Florkowski, Kisiel] correspond to w = 0.63
- The pressure anisotropy at thermalization is still sizable

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8 \simeq 12F_{hydro}(w) - 8 \sim 0.72 - 0.73$$



- w at thermalization is approximately constant and for the initial profiles considered does not exceed w=0.67. It seems to decrease for profiles with smaller initial entropy
- N.B. sample initial conditions for hydrodynamics at RHIC ($\tau_0 = 0.25 \, fm$, $T_0 = 500 \, MeV$) assumed in [Broniowski, Chojnacki, Florkowski, Kisiel] correspond to w = 0.63
- The pressure anisotropy at thermalization is still sizable

$$\Delta p_L \equiv 1 - \frac{p_L}{\varepsilon/3} = 12F(w) - 8 \simeq 12F_{hydro}(w) - 8 \sim 0.72 - 0.73$$

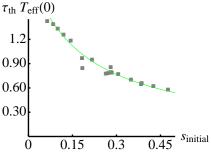
$\tau_{th} \cdot T_{eff}(0)$ at thermalization

• Thermalization time in units of the initial *effective* temperature $T_{eff}(0)$

ullet Again we see a clean dependence on the initial entropy $s_{initial}$

$\overline{\tau_{th} \cdot T_{eff}(0)}$ at thermalization

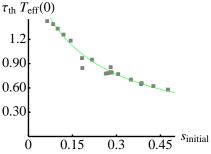
• Thermalization time in units of the initial effective temperature $T_{eff}(0)$



• Again we see a clean dependence on the initial entropy sinitial

$\overline{\tau_{th} \cdot T_{eff}(0)}$ at thermalization

• Thermalization time in units of the initial effective temperature $T_{eff}(0)$



Again we see a clean dependence on the initial entropy s_{initial}

- It is interesting to consider the ratio of the temperature at thermalization to the initial effective temperature
- This gives information on which part of the cooling process occurs in the far from equilibrium regime and which part occurs during the hydrodynamic evolution

- Note: for initial profiles with large $s_{initial}$, the energy density initially rises and only then falls \longrightarrow even for $T_{th}/T_{eff}(0)\sim 1$ there is still sizable nonequilibrium evolution
- For profiles with small initial entropy most of the cooling is of a nonequilibrium nature.

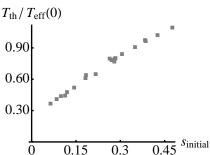
- It is interesting to consider the ratio of the temperature at thermalization to the initial effective temperature
- This gives information on which part of the cooling process occurs in the far from equilibrium regime and which part occurs during the hydrodynamic evolution

- Note: for initial profiles with large $s_{initial}$, the energy density initially rises and only then falls \longrightarrow even for $T_{th}/T_{eff}(0) \sim 1$ there is still sizable nonequilibrium evolution
- For profiles with small initial entropy most of the cooling is of a nonequilibrium nature.

- It is interesting to consider the ratio of the temperature at thermalization to the initial effective temperature
- This gives information on which part of the cooling process occurs in the far from equilibrium regime and which part occurs during the hydrodynamic evolution

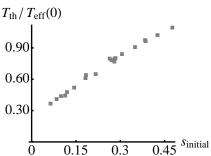
- Note: for initial profiles with large $s_{initial}$, the energy density initially rises and only then falls \longrightarrow even for $T_{th}/T_{eff}(0) \sim 1$ there is still sizable nonequilibrium evolution
- For profiles with small initial entropy most of the cooling is of a nonequilibrium nature.

- It is interesting to consider the ratio of the temperature at thermalization to the initial effective temperature
- This gives information on which part of the cooling process occurs in the far from equilibrium regime and which part occurs during the hydrodynamic evolution



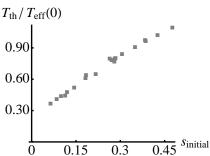
- Note: for initial profiles with large $s_{initial}$, the energy density initially rises and only then falls \longrightarrow even for $T_{th}/T_{eff}(0)\sim 1$ there is still sizable nonequilibrium evolution
- For profiles with small initial entropy most of the cooling is or a nonequilibrium nature.

- It is interesting to consider the ratio of the temperature at thermalization to the initial effective temperature
- This gives information on which part of the cooling process occurs in the far from equilibrium regime and which part occurs during the hydrodynamic evolution



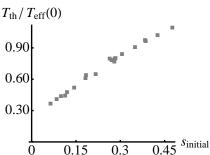
- Note: for initial profiles with large $s_{initial}$, the energy density initially rises and only then falls \longrightarrow even for $T_{th}/T_{eff}(0)\sim 1$ there is still sizable nonequilibrium evolution
- For profiles with small initial entropy most of the cooling is of a nonequilibrium nature.

- It is interesting to consider the ratio of the temperature at thermalization to the initial effective temperature
- This gives information on which part of the cooling process occurs in the far from equilibrium regime and which part occurs during the hydrodynamic evolution



- Note: for initial profiles with large $s_{initial}$, the energy density initially rises and only then falls \longrightarrow even for $T_{th}/T_{eff}(0)\sim 1$ there is still sizable nonequilibrium evolution
- For profiles with small initial entropy most of the cooling is of a nonequilibrium nature.

- It is interesting to consider the ratio of the temperature at thermalization to the initial effective temperature
- This gives information on which part of the cooling process occurs in the far from equilibrium regime and which part occurs during the hydrodynamic evolution



- Note: for initial profiles with large $s_{initial}$, the energy density initially rises and only then falls \longrightarrow even for $T_{th}/T_{eff}(0)\sim 1$ there is still sizable nonequilibrium evolution
- For profiles with small initial entropy most of the cooling is of a nonequilibrium nature.

- AdS/CFT provides a very general framework for studying time-dependent dynamical processes
- The AdS/CFT methods *do not* presuppose hydrodynamics so are applicable even to very out-of-equilibrium configurations
- Even though genuine nonequilibrium dynamics is very complicated, we observed surprising regularities
- Initial entropy seems to be a key physical characterization of the initial state determining the total entropy production and thermalization time and temperature
- For $w = T_{th} \cdot \tau_{th} > 0.7$ we observe hydrodynamic behaviour but with sizeable pressure anisotropy (described wholly by viscous hydrodynamics)

- AdS/CFT provides a very general framework for studying time-dependent dynamical processes
- The AdS/CFT methods do not presuppose hydrodynamics so are applicable even to very out-of-equilibrium configurations
- Even though genuine nonequilibrium dynamics is very complicated, we observed surprising regularities
- Initial entropy seems to be a key physical characterization of the initial state determining the total entropy production and thermalization time and temperature
- For $w = T_{th} \cdot \tau_{th} > 0.7$ we observe hydrodynamic behaviour but with sizeable pressure anisotropy (described wholly by viscous hydrodynamics)

- AdS/CFT provides a very general framework for studying time-dependent dynamical processes
- The AdS/CFT methods do not presuppose hydrodynamics so are applicable even to very out-of-equilibrium configurations
- Even though genuine nonequilibrium dynamics is very complicated, we observed surprising regularities
- Initial entropy seems to be a key physical characterization of the initial state determining the total entropy production and thermalization time and temperature
- For $w = T_{th} \cdot \tau_{th} > 0.7$ we observe hydrodynamic behaviour but with sizeable pressure anisotropy (described wholly by viscous hydrodynamics)

- AdS/CFT provides a very general framework for studying time-dependent dynamical processes
- The AdS/CFT methods do not presuppose hydrodynamics so are applicable even to very out-of-equilibrium configurations
- Even though genuine nonequilibrium dynamics is very complicated, we observed surprising regularities
- Initial entropy seems to be a key physical characterization of the initial state determining the total entropy production and thermalization time and temperature
- For $w = T_{th} \cdot \tau_{th} > 0.7$ we observe hydrodynamic behaviour but with sizeable pressure anisotropy (described wholly by viscous hydrodynamics)

- AdS/CFT provides a very general framework for studying time-dependent dynamical processes
- The AdS/CFT methods do not presuppose hydrodynamics so are applicable even to very out-of-equilibrium configurations
- Even though genuine nonequilibrium dynamics is very complicated, we observed surprising regularities
- Initial entropy seems to be a key physical characterization of the initial state determining the total entropy production and thermalization time and temperature
- For $w = T_{th} \cdot \tau_{th} > 0.7$ we observe hydrodynamic behaviour but with sizeable pressure anisotropy (described wholly by viscous hydrodynamics)