"Fast Timing experiments"

L.M. Fraile for the FATIMA (FAst TIMing Array) collaboration

Grupo de Física Nuclear, Universidad Complutense, E-28040 Madrid, Spain

Annual NUSTAR Week 2012

✓ Absolute transition matrix elements

$$B(X\lambda;I_i \rightarrow I_f) = (2I_i + 1)^{-1} |\langle \psi_f || M(X\lambda) || \psi_i \rangle|^2$$

 $B(X\lambda;I_i \rightarrow I_f) = \frac{L[(2L+1)!!]^2 \hbar}{8\pi(L+1)} (\frac{\hbar c}{E_\gamma})^{2L+1} P_\gamma(X\lambda;I_i \rightarrow I_f)$
→ Single particle estimates

- Shell evolution
- Mirror symmetries
- \rightarrow B(E2) values
 - Deformation of even-even nuclei
 - Collective modes (spin dependence), shape coexistence...
- \rightarrow Collectivity
 - For instance, octupole correlations...
- \rightarrow Systematics

|Ψ_i>

 $|\Psi_{f}\rangle$

Μ(Χλ

[H. Mach et al., NPA 523 (1991) 197]

HPGe: BRANCH SELECTION High energy resolution Poor time response Plastic β scintillator: TIMING Fast response Efficient start detector LaBr₃(Ce)/BaF₂: TIMING

Calibrations!

Fast response γ-detectors Stop detectors

- \rightarrow Double coincidences: $\beta\gamma$: beta-Ge and beta-LaBr₃
- \rightarrow Triple coincidences $\beta\gamma\gamma$: beta-Ge-Ge and beta-Ge-LaBr₃

Fast timing $\gamma\gamma(t)$

Fast timing yy(t)

Cologne HORUS cube spectrometer [J. Jolie]

8 HPGe & 7 LaBr₃(Ce) @ Bucharest [N. Marginean]

Time resolution vs efficiency

- Opposite requirements
- Precision = Resolution (FWHM) / $N^{\frac{1}{2}}$
- ✓ Detectors: LaBr₃:Ce
 - Experience gained with BaF₂ over 20 years applies to LaBr₃:Ce
 - Doping
 - Size ("as small as possible" ;-)
 - Shape (but 44-46 mm diameter at base for coupling)
 - Alternatives CeBr₃
- ✓ Photosensors (PMs and voltage dividers)
 - Best time response phototubes are 2" tubes
 - Effective diameter is about 44-46 mm
 - Alternatives **SiPMs**
- ✓ Front-end / timing electronics
 - CFDs
 - Digital options

L.M. Fraile – GFN-UCM

Scintillator detectors

γ - γ timing with LaBr₃(Ce) scintillators

$\gamma - \gamma$ timing with LaBr₃(Ce) scintillators

J.-M. Régis et al., NIM A 622 (2010) 83

The timing of the 2 detectors in areal γ - γ fast timing setup is **asymmetric**

A lifetime measurement...

In-beam spectroscopy at HORUS IKP

Evolution of B(E2) strength in even-even isotopic chains

Valence proton boson number: 3 (Os), 4 (W) and 5 (Hf)

- \cdot Increase of B(E2) values with valence proton boson number: IBA
- · Peaking near neutron mid-shell (N=104): IBA
- Maxima at N=98 and N=102: uhm...

Nuclear chart around ⁶⁸Ni

			errere la																			
		Cu 57	Cu 58	Cu 59	Cu 60	Cu 61	Cu 62	Cu 63	Cu 64	Cu 65	Cu 66	Cu 67	Cu 68	Cu 69	Cu 70	Cu 71	Cu 72	Cu 73	Cu 74	Cu 75		
π (0f7/2) ^{Z-20}	28	Ni 56	Ni 57	Ni 58	Ni 59	Ni 60	Ni 61	Ni 62	Ni 63	Ni 64	Ni 65	Ni_ 66	Ni 67	Ni 68	Ni 69	Ni 70	Ni 71	Ni 72	Ni 73	Ni 74		
	26	Co 55	Co 56	Co 57	Co 58	Co 59	Co 60	Co 61	Co 62	Co 63	Co 64	Co 65	Co 66	Co 67	Co 68	Co 69	Co 70	Co 71	Co 72	Co 73		
		Fe 54	Fe 55	Fe 56	Fe 57	Fe 58	Fe 59	Fe 60	Fe 61	Fe 62	Fe 63	Fe 64	Fe 65	Fe 66	Fe 67	Fe 68	Fe 69	Fe 70	Fe 71	Fe 72		
		Mn 53	Mn 54	Mn 55	Mn 56	Mn 57	Mn 58	Mn 59	Mn 60	Mn 61	Mn 62	Mn . 63	<u>Mn</u> 64	Mn 65	Mn 66	Mn 67	Mn 68	Mn 69		46		
	24	Cr 52	Cr 53	Cr 54	Cr 55	Cr 56	Cr 57	Cr 58	Cr 59	Cr 60	Cr 61	Cr 62	Cr 63	Cr 64	Cr 65	Cr 66	Cr 67	44	1			
		V 51	V 52	V 53	V 54	V 55	V 56	V 57	V 58	V 59	V 60	V 61	V 62	V 63	V 64	42		1		N		
	22	Ti 50	Ti 51	Ti 52	Ті 53	Ti 54	Ti 55	Ti 56	Ti 57	Ti 58	Ті 59	Ті 60										
,		Sc 49	Sc 50	Sc 51	Sc 52	Sc 53	Sc 54	Sc 55	Sc 56	Sc 57	Sc 58	38	38								ε	
core		28		30		32		34		36										S		
⁴⁸ Ca	⁴⁸ Ca core $v(1p_{3/2}, 0f_{5/2},$								_{/2} , 1	, 1p _{1/2}) ^{N−28}						∨ (0g _{9/2}) ^{N-40}						

L.M. Fraile – GFN-UCM

Analysis ⁶⁵Mn decay

L.M. Fraile - GFN-UCM

Transitions in ⁶⁵Fe

Two dipole M1 and one E2 transition Beta feeding from 5/2⁻

1/2⁻ is the ground state
3/2⁻ is the 364 keV state
5/2⁻ is the 455 keV state

Structure at higher E Similar situation expected in odd-A Fe isotopes Role of the 9/2⁺ orbital

3. E1/E3 transitions in Cu isotopes

63**C**11

 $T_{1/2} (9/2^+) [ps]$

 $< 9x10^{-5}$ 9x10-5 B(E1; $\rightarrow 7/2^{-1}$) 9x10⁻⁵ B(E1; $\rightarrow 7/2^{-}$) 7x10⁻⁵ $< 6 \times 10^{-5}$ $4x10^{-4}$

61**Cu**

> 2.8 1.5 +3/-2

⁵⁹Cu

0.80(35)

67 Cu : T_{1/2}(9/2⁺) < 300 ps

- B(E3;2503 keV) > 11 W.u.
- $B(E1;833 \text{ keV}) > 1.1 \times 10-6 \text{ W.u.}$

If B(E1) in 67 Cu is ~ 10⁻⁵ W.u., then B(E3) >> 11 W.u, out from systematics

Fast-timing measurement for ⁶⁷Cu

⁶⁴Ni(α,p)⁶⁷Cu E_{α} = 18 MeV 5 HP-Ge (55% rel. eff.) 4 HP-Ge planar detectors 8 LaBr₃(Ce) [D. Bucurescu & D. Pantelica, N. Marginean, C. Nita] ⁶⁷Cu selected by gating on the 99.9 keV line observed with the HP-Ge LEPS

Lifetime of positive-parity states in ⁶⁷Cu

4. M2 strengths close to island of inversion

- Recent study of ³⁴P identified low-lying $I^{\pi}=4^{-}$ state at E=2305 keV.
- 2⁺ state based primarily on $[\pi 2s_{1/2} \times (\nu 1d_{3/2})^{-1}]$ configuration and 4⁻ state based primarily on $[\pi 2s_{1/2} \times \nu 1f_{7/2}]$ configuration: $f_{7/2} \rightarrow d_{3/2}$, M2 transition.
- Different admixtures in 2⁺ and 4⁻ states allow mixed M2/E3 transition

The aim of experiment is to measure precision lifetime for 2305 keV state and obtain B(M2) and B(E3) values.

- Previous studies limit half-life to $0.3 \text{ ns} < t_{1/2} < 2.5 \text{ns}$
- New results by Bender et al. give δ=0 for mixing ratio but Chakrabarti et al. measured significant E3 mixing
- 2+ half life below 1 ps

Experiment at Bucharest

¹⁸O(¹⁸O,pn)³⁴P fusion-evaporation at 36 MeV with $\sim 5 - 10$ mb 50mg/cm² Ta₂¹⁸O Enriched foil, ¹⁸O Beam from Bucharest Tandem (~20pnA)

Results

Results

5. Interplay of sp and colectivity in Mo

 $T_{1/2} = 2.58 (11) \text{ ps}$

20

 $T_{1/2} = 138 (18) \text{ ps}$

Ŧ

8+

21/2 +

6+

17/2 +

4+

Ŧ

10 +

25/2+

2

Conclusions

✓ Powerful technique

- \rightarrow Application in several regions of interest
- Profit from scintillator/photosensor developments
 - \rightarrow Requires R&D and careful preparation of equipment
 - \rightarrow Needs accurate calibrations / understanding of systematics
- ✓ Experience gained
 - \rightarrow Beta decay
 - \rightarrow In beam
 - \rightarrow Arrays / mixed arrays
 - ... and many results

✓ Looking forward to PRESPEC decay and FAIR

L.M. Fraile – **GFN-UCM**

NIPNE Bucharest – IKP Cologne – LPSC Grenoble – University of Sofia – University of Brighton – ILL Grenoble – IKP Cologne – University of Surrey – UCM Madrid – ...

N. Marginean, D.G. Ghita
J. Jolie, J.-M. Régis, M. Rudigier
G.S. Simpson
S. Lalkovski
A. Bruce, P.H. Regan, O.J. Roberts
H. Mach, B. Olaizola, V. Vedia
...

