

β-strength studies of very neutronrich nuclei at DESPEC

Jose L. Tain Instituto de Física Corpuscular, C.S.I.C - Univ. Valencia

for the BELEN, DTAS and MONSTER Collaborations

- β-decay strength distributions
- Importance for nuclear structure and astrophysics
- First β-delayed neutron measurements
- Future total absorption gamma-ray spectroscopy measurements

β -strength S_{β} and β -intensity I_{β}

$$B_{i \to f} = \frac{1}{2J_i + 1} \left| \left\langle f \left\| M_{\lambda \pi}^{\beta} \right\| i \right\rangle \right|^2$$
$$S_{\beta} \left(E_x \right) = \frac{1}{D} \frac{4\pi}{g_V^2} B_{i \to f}$$

λπ: 0+ Fermi
λπ: 1+ Gamow-Teller
λπ: 0-,1- Non-unique first forbidden
λπ: 2- Unique first forbidden

The β -strength measures the nuclear structure dependent part of the decay probability

Relation between S_{β} and I_{β} :

$$S(E_{x}) = \frac{I(E_{x})}{f(Q_{\beta} - E_{x})T_{1/2}} [s^{-1}]$$

The β-decay probability distribution is very sensitive to nuclear structure

Beta decay of neutron rich nuclei

Far enough from the stability, β-delayed neutron emission
 becomes de dominant
 decay process

At FAIR both γ -ray spectroscopy and neutron spectroscopy will be required to study the β -strength

• The (inverse of the) half-life $T_{1/2}$ is a weighted average of the β -strength S_{β}

$$\frac{1}{T_{1/2}} = \int_{0}^{Q_{\beta}} S_{\beta}(E_x) \cdot f(Q_{\beta} - E_x) dE_x$$

• The neutron emission probability P_n measures the fraction of β -strength above the neutron separation energy S_n

$$P_{n} = T_{1/2} \times \int_{S_{n}}^{Q_{\beta}} S_{\beta}(E_{x}) \cdot f(Q_{\beta} - E_{x}) \cdot \frac{\Gamma^{n}}{\Gamma^{n} + \Gamma^{\gamma}} dE_{x}$$

• For n-rich nuclei very far from stability $T_{1/2}$ and P_n provide (the only) access to nuclear structure information

At DESPEC one or more of the following instruments will be used to study β-strength distributions:

Total Absorption γ-Ray Spectrometer: DTAS

Neutron Time of Flight Spectrometer: MONSTER

 DTAS provides data free of systematic errors

BELEN provides P_n

 MONSTER provides the E_n and the strength above S_n

Rapid neutron capture astrophysical process

T_{1/2} and P_n values are required for r-process calculations:

- speed of the process
- final abundance distribution

For most of the nuclei involved $T_{1/2}$ and P_n have to be obtained from β -strength theoretical calculations

The region close the r-process

- r-process calculations beyond the 3rd peak
- Actinide production and U/ Th cosmo-chronometers
- Contribution to Pb/Bi: sprocess termination path

First-forbidden transitions play a dominant role in this region

3p1/2 3p3/2 2f5/2 3d3/2 2g7/2 4s1/2 1i13/2 3d5/2 1j15/2 2f7/2 1i11/2 1h9/2 2g9/2 FF 82 126 3p1/2 2f5/2 3s1/2 3p3/2 2d3/2 1i13/2 1h11/2 2f7/2 2d5/2 GT 1h9/2 1g7/2 π γ ²⁰⁸Pb

In general FF far-of-stability produce a shortening of half-lives: Moeller, PRC67(2003)055802

Considerable differences between calculations

FRDM + QRPA: Kratz & Pfeiffer

S410: Measurement of βdelayed neutrons around the 3rd r-process peak (C. Domingo et al.)

September 2011

BEta deLayEd Neutron detector

Scmx60cm high-pressure
 ³He tubes in a polyethylene
 moderation matrix

(UPC, IFIC, GSI/Giessen)

- High selectivity
- Large efficiency
- Some energy dependence
- Long moderation times

$$P_n = \frac{1}{\varepsilon_n} \frac{N_{\beta n}}{N_{\beta}}$$

Self-triggered digital acquisition system integrated into MBS

Silicon IMplantation detector and Beta Absorber (TUM)

PhD thesis C. Hinke, TUM (2010)

- 2×SSD (6cm×6cm×0.3mm) X-Y
- 2×SSD (6cm×4cm×1mm) β-absorber
- 3×DSD (6cm×4cm×0.7mm) implant
- 2×SSD (6cm×6cm×1mm) β-absorber

Diploma thesis K. Steiger, TUM (2009)

(S323: Beta-decay of very neutron rich Rd, Pd, Ag isotopes including the waiting point 128Pd (F. Montes et al.) was carried with the same set-up in the same run)

(Preliminary analysis by R. Caballero & C. Domingo)

Beta- delayed neutrons have been identified in spite of the large beam-induced neutron background!

260 n/s

1.5 n/s

104

10³

 10^{2}

Counts

1s + 2s

MOdular Neutron SpectromeTER

200 x BC501A modules ⊗20cmx5cm cell 5"PMT R4144

(CIEMAT, VECC, JYFL, IFIC)

efficiency

12.5%

5.6%

200 detectors,

10cm radius TOF length Geometric

(m)

2

3

Production of prototypes for further cells started at VECC

ΔE/E @ 1 MeV

4ns

6.0%

4.2%

1ns

3.5%

2.5%

Dedicated digitizers: 14bit-1Gs/s under production (CIEMAT)

•30 cell demonstrator
•ready by the end 2012
•commissioning at JYFL

C. Domingo-Pardo et al., Experiment S410
 J. Benlliure et al., NIC XI, Heidelberg, 2011
 J.J. Valiente et al., Experiment S350, this conf.

Total Absorption Gamma-ray Spectroscopy:

• Uses large 4π scintillation detectors, aiming to detect the full γ -ray cascade rather than individual γ -rays

An ideal TAS would give directly the β -intensity I_{β}

Real TAS response depends weakly on de-excitation path

Response from MC simulations and nuclear statistical model

$$\mathbf{f} = \mathbf{R}^{-1} \cdot \mathbf{d}^{\mathbf{H}}$$
$$\mathbf{R}_{\mathbf{j}} = \sum_{k=0}^{j-1} b_{jk} \mathbf{g}_{\mathbf{j}\mathbf{k}} \otimes \mathbf{R}_{\mathbf{k}}$$

Deconvolution with the TAS response to decay

β-Decay Total Absorption Spectrometer

 $16 \times Nal(TI)$ crystals:

- 15×15×25 cm³
- Minimum dead-material
- 5" PMT: ETL9390

Designed to be coupled to AIDA implantation detector

→Cascade multiplicity information

Good

efficiency

A design with 128 \times 5.5 \times 5.5 \times 11cm3 LaBr₃:Ce crystals was discarded because of cost

14 detector modules just delivered!

Full spectrometer assembled plus electronics ready by the end of the year

Conclusions:

- First experiments with BELEN have been performed at the FRS to investigate β-delayed neutron emission close to ¹³²Sn and ²⁰⁸Pb (2nd and 3rd r-process abundance peak). JINR is joining with additional 40 counters
- The DTAS spectrometer will be ready by the end of 2012 for commissioning and awaiting for a PRESPEC stopped beam campaign
- A 30 cell prototype of MONSTER will be ready at the end of 2012 for commissioning and awaiting for a PRESPEC stopped beam campaign

 BELEN Collaboration: UPC-Barcelona, IFIC-Valencia, GSI-Darmstadt/U. Giessen, CIEMAT-Madrid, JINR-Dubna
 DTAS Collaboration: IFIC-Valencia, U. Surrey, CIEMAT-Madrid, JYFL-Jyvaskyla, PNPI-Gatchina
 MONSTER Collaboration: CIEMAT-Madrid, VECC-Kalkatta, JYFL-Jyvaskyla, IFIC-Valencia

R.Caballero-Folch¹, J.Agramunt², A.Algora², F.Ameil³, Y.Ayyad⁴, J.Benlliure⁴, M.Bowry⁵, F.Calviño¹, D.Cano-Ott⁶, T.Davinson⁷, I.Dillmann^{8,3}, C.Domingo-Pardo², A.Estrade³, A.Evdokimov^{8,3}, T.Faestermann⁹, F.Farinon³, D.Galaviz-Redondo¹⁰, A.García-Rios⁶, H.Geissel³, W.Gelletly⁵, R.Gernhuser⁹, M.B.Gómez-Hornillos¹, C.Guerrero¹¹, M.Heil³, C.Hinke⁹, R.Knöbel³, I.Kojouharov³, J.Kurcewicz³, N.Kurz³, Y.Litvinov³, L.Maier⁹, J.Marganiec³, M.Marta^{3,8}, T.Martinez⁶, F.Montes¹², I.Mukha³, D.R.Napoli¹³, Ch.Nociforo³, C.Paradela⁴, S.Pietri³, Z.Podolyák⁵, A.Prochazka³, S.Rice⁵, A.Riego¹, B.Rubio², H.Schaffner³, Ch.Scheidenberger^{8,3}, K.Smith^{14,15}, E.Sokol¹⁶, K.Steiger⁹, B.Sun³, J.L.Taín², M.Takechi³, D.Testov^{17,16}, H.Weick³, E.Wilson⁵, J.Winfield³, R.Wood⁵ and P.Woods⁷

S410:

¹Universitat Politècnica de Catalunya, Barcelona, Spain; ²Institut de Física Corpuscular, València, Spain; ³GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; ⁴Universidad de Santiago de Compostela, Spain; ⁵Department of Physics, University of Surrey, Guildford GU27XH, UK; ⁶CIEMAT, Madrid, Spain; ⁷School of Physics and Astronomy, University of Edinburgh, UK; ⁸II. Physikalisches Institut, Justus-Liebig Universität Giessen, Germany; ⁹Department of Physics E12, Technische Universität München, Germany; ¹⁰CFNUL, Centro de Fisica Nuclear da Universidad de Lisboa, Portugal; ¹¹CERN; ¹²National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan, USA; ¹³Laboratory Nazionali di Legnaro, INFN, Italy; ¹⁴Department of Physics, University of Notre Dame, South Bend, Indiana, USA; ¹⁵Joint Institute for Nuclear Astrophysics, University of Notre Dame, Suth Bend, Indiana, USA; ¹⁶Flerov Laboratory, Joint Institute for Nuclear Research, Dubna, Russia; ¹⁷IPN Orsay, France

THANK YOU!

 Q_{β} = 5.4 MeV (SY)

Expected number of levels: N^{lev}=4.1×10⁴ Goriely et al. PRC78(08) 064307

TAS neutron sensitivity (The case of delayed neutron emitters)

¹⁴⁷Cs Q_{β} =9.2MeV, S_{n} =4.5MeV , P_{n} = 27.5%

100

t [ns]

80

60

40

0

20