Recent results from the AGATA Demonstrator Array at LNL

E. Farnea

INFN Sezione di Padova
On behalf of the AGATA Collaboration

1. The AGATA Demonstrator at Legnaro
2. Highlights from the performed experiments
5 asymmetric triple-clusters
36-fold segmented crystals
555 digital-channels
Eff. 3 - 8 % @ $M_\gamma = 1$
Eff. 2 - 4 % @ $M_\gamma = 30$
Full EDAQ with on line PSA and γ-ray tracking
In beam Commissioning
First installation site: LNL

Main issue is Doppler correction capability
→ coupling to beam and recoil tracking devices
From CLARA to AGATA

March 2008

May 2011
Doppler correction capabilities

Inelastic scattering

\(^{17}\text{O} \@ \text{20 MeV/u on } {^{208}\text{Pb}}\)

\[\beta \approx 20\%\]

D.Mengoni, R.Nicolini, F.Crespi

No Dopp Corr
Crystal Centers
Segment Centers
PSA+Tracking

\(\text{TKE (MeV)} - \text{dE (MeV)}\)

4500 5000 5500 6000 6500

Energy (keV)

Counts (A.U.)
Resolution vs rate

Two independent sources of dead-time: pile-up rejector and GTS

60Co - fixed

137Cs - 6 positions

6 different rates x 4 trapezoid risetime x 6 blr length
The Experimental Campaign at LNL

- Neutron-rich nuclei in the vicinity of ^{208}Pb
- N=51 nuclei
- Molecular structure of ^{21}Ne
- Coulex of ^{42}Ca
- Octupole-deformed Ra and Th nuclei
- Shape transition in ^{196}Os
- g.s. rotation in Dy, Er, Yb
- The lifetime of the 6.792 MeV state in ^{15}O
- Lifetimes near the island of inversion
- N=84 isotone
- n-rich Th and U
- Order-to-chaos transition in ^{174}W
- Lifetimes in n-rich Ni, Cu and Zn isotopes
- Lifetimes of the n-rich Cr isotopes
- 20(+3) exp. 148 days

- Isospin Mixing in ^{80}Zr
- Proton drip-line
- Pygmy and GQR states
- Neutron-rich nuclei populated by fission
- g.s. rotation in Dy, Er, Yb
- Neutron-rich nuclei in the vicinity of ^{208}Pb
- n-rich Th and U
Around the island of inversion

Transition from harmonic vibrator to rotor between Si and Mg at N=22?

X. Liang et al., PRC 74, 014311 (2006)
Shell model calculations (Antoine+PSDPF) reproduce fairly the observed level energies (CLARA-PRISMA data), transition probabilities are needed to provide more stringent test of the model!

AGATA+PRISMA +plunger experiment

$^{36}\text{S} + ^{208}\text{Pb}$
Preliminary γ spectra

36S

$3^- \rightarrow 2^+ \ 902 \text{ keV transition}$

Predicted lifetime: 0.25 ps
Stellar burning rates and $^{14}\text{N}(p,\gamma)^{15}\text{O}$ reaction

Precise knowledge of nuclear x-sections

C,N abundances in the solar core can be obtained by measuring the neutrino fluxes

[W.C.Haxton et al., As.J.687(2008)678]

possible solution for the “solar composition problem”

$^{14}\text{N}(p,\gamma)^{15}\text{O}$ is the “bottle neck” determining the overall rate
Captures to different excited states in 15O contribute to the x-section. The one to the gs in 15O is dominated by the tail of the sub-threshold resonance at -507 keV (6.79 MeV state in 15O).

\[\text{[C. Angulo et al., NP A690 (2001) 755, M. Marta et al., PR C78 (2008) 022802(R), ...]} \]
$^{14}\text{N}(p,\gamma)^{15}\text{O}$ reaction cross section

M. Marta / Progress in Particle and Nuclear Physics 66 (2011) 303–308

Q E_p^{cm} E_x J^π

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>987</td>
<td>8284</td>
<td>$3/2^+$</td>
<td></td>
</tr>
<tr>
<td>7297</td>
<td>7536</td>
<td>$1/2^+$</td>
<td></td>
</tr>
<tr>
<td>6472</td>
<td>6292</td>
<td>$3/2^-$</td>
<td></td>
</tr>
<tr>
<td>5241</td>
<td></td>
<td>$5/2^+$</td>
<td></td>
</tr>
<tr>
<td>5181</td>
<td></td>
<td>$1/2^+$</td>
<td></td>
</tr>
</tbody>
</table>

Adopted $\Gamma_\gamma(6792\text{ keV}) = 0.9 \pm 0.2\text{ eV}$

$S_{gs}(0) = 0.20 \pm 0.05\text{ keV} \cdot \text{b}$

$\Gamma_\gamma(6792\text{ keV}) = 0.8\text{ eV}$

0.6 eV

$\frac{\hbar}{\tau}$

Change of $\approx 20\%$ in $\Gamma = \frac{\hbar}{\tau} \rightarrow$ change of $\approx 30\%$ in $S_{gs}(0)$

H. P. Trautvetter et al., JGP 35 (2008) 014019 and courtesy of M. Marta
Lifetime measurement of the 6.79 MeV state in 15O

14N(2H,n)15O and 14N(2H,p)15N reactions @ 32 MeV (XTU LNL Tandem)

Direct lifetime measurement with 4 ATCs at backward angles (close to the beam-line)
Lifetime measurement of the 6.79 MeV state in ^{15}O

$^{14}\text{N}(^{2}\text{H},n)^{15}\text{O}$ and $^{14}\text{N}(^{2}\text{H},p)^{15}\text{N}$ reactions @ 32 MeV (XTU LNL Tandem)

Direct lifetime measurement with 4 ATCs at backward angles (close to the beam-line)

Detected gamma-rays can be sorted in few degrees θ “slices” with a continuous distribution

C. Michelagnoli
Reaction kinematics

Due to the short lifetimes, the lineshapes strongly reflect the reaction kinematics. Both 15O and 15N excited levels are mainly populated via nucleon (proton and neutron, respectively) transfer reactions.

CDCC** calculations of the nucleon transfer process by N. Keeley

**Continuum-Discretized Coupled Channels

but also the fusion-evaporation channel is open

ratio between the two different mechanism and (energy) spectrum of the evaporated particle not much help in the literature....
The 8.31MeV level in ^{15}N

$\tau = (2\pm3) \text{ fs}^*$

*from $\Gamma=(0.3\pm0.2) \text{ eV}$
[R. Mareh et al., *PRC* 23 (1981) 988]
The 6.79MeV level in 15O

chi-square analysis on all the “theta-slices” ongoing...
Order-to-chaos in 174W

High-Spin Fusion Evaporation
50Ti on 128Te @ 217 MeV, I $\geq 60\hbar$

Loss of selection rules on K with temperature

Goal: populate 174W at the highest possible spins ($\geq 60\hbar$), in order to make the statistical fluctuation analysis of the ridge-valley structures in the γ-γ matrices, to estimate the number of low-K and high-K bands and their correlation.

4 Triple Clusters
2 and 3 folds:
$\varepsilon_2\gamma=30\%$, $\varepsilon_3\gamma=10\%$
($M_\gamma = 30$)

27 detectors: 5 clusters of BaF$_2$
(3”x3”, exagonal)
Total solid angle: 25% of 4π
Total efficiency: 16% @ 500keV

V. Vandone
Helena: selection of high-K bands

$^{174}\text{W selection}$

$K = 12$

$K = 8$

Gate on ENERGY:

- delayed γ
- prompt γ

Gate on γ-isomer → enhanced delayed bump

AGATA vs Helena time-spectrum

Gate on DELAYED time:

Isomeric gammas

- 1000 keV
- 965 keV
- 1314 keV
- 1328 keV
- 1349 keV
- 1879 keV

\star background

Helena: selection of high-K bands

- $K = 12$
- $K = 8$

Band 16

Band 15

Band 8

Band 7

686 keV

1328 keV

1879 keV

128 ns

158 ns

174W selection
Quasi-Continuum $\gamma-\gamma$ matrices

Statistical fluctuation analysis of ridges:
Number of bands below 1 MeV

Covariance analysis of ridges
Covariance = similarity of different cascades & test of the selection rules

- $2\times4\hbar^2/\gamma^2 \approx 120$ keV
- 880 keV
- 820 keV
- 780 keV

K quantum number is conserved up to 1 MeV
AGATA Demonstrator/1π Experimental Program

2010-2011 → LNL
 5TC

2012 → GSI/FRS
 ≥5DC+5TC

2014 → GANIL/SPIRAL2
 ~15TC

AGATA D. + PRISMA
Total Eff. ~6%

AGATA @ FRS
Total Eff. > 10%

AGATA + VAMOS + EXOGAM
Total Eff. > 20%
AGATA at PreSPECC

- 5 double Cluster
- 10 triple Cluster
- AGATA + Miniball

\[\gamma\text{-efficiency} = 17.5\% \]
\[\gamma\gamma\text{-efficiency} = 2.5\% \]

<table>
<thead>
<tr>
<th>Resolution (FWHM)</th>
<th>Intrinsic Spatial Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5 keV</td>
<td>5 mm</td>
</tr>
<tr>
<td>4 keV</td>
<td>2 mm</td>
</tr>
</tbody>
</table>

Aim for AGATA@GSI:

- 5 double Cluster
- 10 triple Cluster
- AGATA + Miniball

Start spring 2013

Beam pipe diameter = 12 cm
Chamber diameter = 46 cm

\[\gamma\text{-efficiency} = 17.5\% \]
\[\gamma\gamma\text{-efficiency} = 2.5\% \]
Outlook

• Following the commissioning campaign, the physics campaign has started in February 2010
• Performance of the array is satisfactory, in close coupling with several ancillary devices
• Analysis of the experiments performed so far is ongoing, more results soon
• Good luck to the GSI colleagues with the upcoming AGATA@PreSPEC campaign!