

E.Farnea

INFN Sezione di Padova On behalf of the AGATA Collaboration

- 1. The AGATA Demonstrator at Legnaro
- 2. Highlights from the performed experiments

The AGATA Demonstrator Objective of the final R&D phase 2003-2008

5 asymmetric triple-clusters 36-fold segmented crystals 555 digital-channels Eff. 3 - 8 % @ M_{γ} = 1 Eff. 2 - 4 % @ M_{γ} = 30 Full EDAQ with on line PSA and γ -ray tracking In beam Commissioning First installation site: LNL

Main issue is Doppler correction capability \rightarrow coupling to beam and recoil tracking devices

From CLARA to AGATA

Doppler correction capabilities

Resolution vs rate

F.Recchia

Around the island of inversion

Around the island of inversion

 (6^{+})

6690

Shell model calculations (Antoine+PSDPF) reproduce fairly the observed level energies (CLARA-PRISMA data), transition probabilities are needed to provide more stringent test of the model!

Preliminary y spectra

 $3^{-} \rightarrow 2^{+} 902$ keV transition Predicted lifetime: 0.25 ps

365

Stellar burning rates and ${}^{14}N(p,\gamma){}^{15}O$ reaction

Precise knowledge of nuclear x-sections

C,N abundances in the solar core can be obtained by measuring the neutrino fluxes [W.C.Haxton et al., As.J.687(2008)678]

possible solution for the "solar composition problem" [A.M.Serenelli et al., As.J.Lett. 705, L123-L127 (2009)]

$^{14}N(p,\gamma)^{15}O$ reaction cross section

 E_{p}^{cm} J^{π} Q $E_{\mathbf{x}}$ 987 8284 3/2 DC -7556 1/2 259 7297 6792 3/2 - 507 keV $^{14}N + p$ 6172 3/2 5241 5/25181 1/21/2 15 O

M. Marta / Progress in Particle and Nuclear Physics 66 (2011) 303-308

Captures to different excited states in ¹⁵O contribute to the x-section. The one to the gs in ¹⁵O is dominated by the tail of the sub-threshold resonance at -507 keV (6.79 MeV state in ¹⁵O) [C.Angulo et al., NP A690 (2001) 755, M.Marta et al., PR C78 (2008) 022802(R),]

$^{14}N(p,\gamma)^{15}O$ reaction cross section

Lifetime measurement of the 6.79 MeV state in ¹⁵O

¹⁴N(²H,n)¹⁵O and ¹⁴N(²H,p)¹⁵N reactions @ 32 MeV (XTU LNL Tandem) **Direct lifetime measurement** with 4 ATCs at backward angles (close to the beam-line)

Lifetime measurement of the 6.79 MeV state in ¹⁵O

¹⁴N(²H,n)¹⁵O and ¹⁴N(²H,p)¹⁵N reactions @ 32 MeV (XTU LNL Tandem) **Direct lifetime measurement** with 4 ATCs at backward angles (close to the beam-line)

Reaction kinematics

Due to the short lifetimes, the lineshapes strongly reflect the reaction kinematics. Both ¹⁵O and ¹⁵N excited levels are mainly populated *via* nucleon (proton and neutron, respectively) transfer reactions

The 8.31MeV level in ¹⁵N

(*from Γ=(0.3±0.2) eV [R. Moreh et al., PRC 23 (1981) 988])

The 6.79MeV level in ^{15}O

Order-to-chaos in ¹⁷⁴W

High-Spin Fusion Evaporation 50 Ti on 128 Te @ 217 MeV, I $\geq 60\hbar$

Goal: populate ¹⁷⁴W at the highest possible spins ($\geq 60\hbar$), in order to make the statistical fluctuation analysis of the ridge-valley structures in the $\gamma-\gamma$ matrices, to estimate the number of low-K and high-K bands and their correlation

27 detectors: 5 clusters of BaF₂ (3"×3", exagonal) Total solid angle: 25% of 4π Total efficiency: 16% @ 500keV

Quasi-Continuum y-y matrices

Statistical fluctuaction analysis of ridges: Number of bands below 1 MeV

Covariance analysis of ridges

Covariance = similarity of different cascades & test of the **selection** rules

AGATA Demonstrator/1π Experimental Program

AGATA D.+PRISMA Total Eff. ~6% AGATA @ FRS Total Eff. > 10%

AGATA + VAMOS + EXOGAM Total Eff. > 20%

AGATA at PreSPEC

γ-efficiency = 17.5% γγ-efficiency = 2.5%	
resolution	intrinsic spatial
(FWHM)	resolution

5 mm

2 mm

8.5 keV

4 keV

Aim for AGATA@GSI:
> 5 double Cluster 10 triple Cluster
> AGATA + Miniball
start spring 2013

beam pipe diameter = 12cm chamber diameter = 46 cm

C*

Outlook

- Following the commissioning campaign, the physics campaign has started in February 2010
- Performance of the array is satisfactory, in close coupling with several ancillary devices
- Analysis of the experiments performed so far is ongoing, more results soon
- Good luck to the GSI colleagues with the upcoming AGATA@PreSPEC campaign!