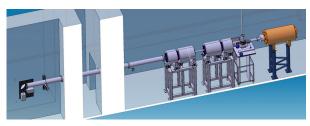
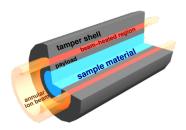


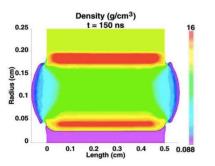
Three main experimental schemes will be used: HIHEX, PRIOR & LAPLAS


HIHEX
Heavy Ion Heating and Expansion

Density of the plasma page flows the plasma

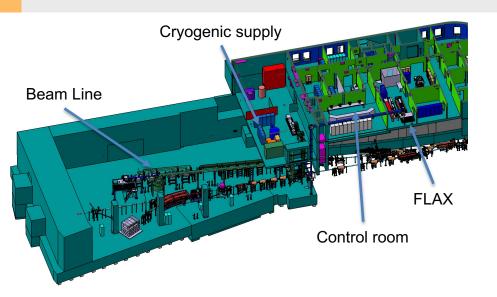
Create mm-sized samples of warm dense matter


PRIOR Proton Microscopy



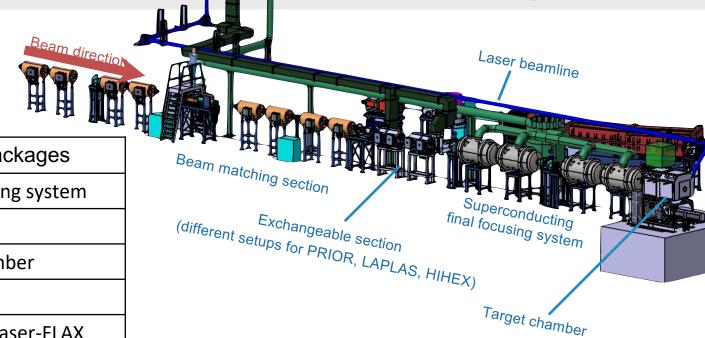
Use protons for precise density measurements

LAPLAS
Laboratory Planetary Science



Compress mm-sized samples to Mbar pressures

Construction work for the APPA cave is progressing



- Civil construction of the APPA cave is currently in progress
- The planning of the technical infrastructure for the APPA cave and the support building is currently being finalized
- Completion of the APPA building is scheduled for 2023, the main installation window is scheduled for 2024
- Beam expected in Q4/2025

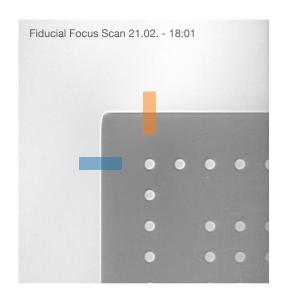
The modular design of the HED@FAIR beamline accommodates all experimental setups



PSP	Working packages			
1.3.2.1.2	Final fucussing system			
1.3.2.1.5	PRIOR			
1.3.2.2	Target Chamber			
1.3.2.3	Detectors			
1.3.2.4	Diagnostic Laser-FLAX			
1.3.2.6	DAQ			
1.3.2.7	Infrastructure			

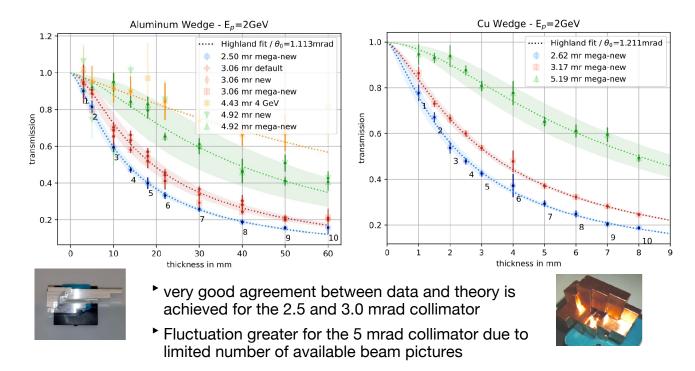
PRIOR II Facility at HHT (PSP 1.3.2.1.5)

- New electric quadrupoles and power supplies built and installed at HHT
- Commissioning beam time in Feb21
- Tests with static and dynamic targets



PRIOR II (2021)

PRIOR-II commissioning beam time (Feb 2021): Spatial resolution revisited (fiducial target)



- ► 1px = 21.2 μm, magnification = 3.5 > detector resolution 40-50 μm
- ullet Spatial resolution of \backsim 15 μm , mostly limited by detector resolution

PRIOR-II commissioning beam time (Feb 2021): Density calibration / sensitivity (using step wedges)

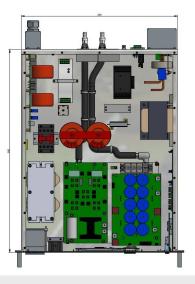
2nd commissioning beam time running

Status of the superconducting final focusing system

Superconducting magnets (PSP 1.3.2.1.2.1) (Russian in-kind contribution, IHEP Protvino)

- FDR approved
- Material procurement finished
- Production has started

Current leads (PSP 2.8.2.13.1) (German in-kind contribution)


- Supplier contracted (Mark & Wedell)
- FDR expected by the end of March
- Production of first pair scheduled for Q2/22

Power supplies (PSP 1.3.2.1.2.2) (German in-kind contribution)

- Contracted to supplier (OCEM)
- Kick-off meeting with system/production details in July 21
- FDR expected in 2-3 weeks

Production of superconducting Quadrupoles

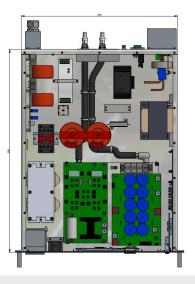
GSI Helmholtzzentrum für Schwerionenforschung GmbH

Status of the superconducting final focusing system

Superconducting magnets (PSP 1.3.2.1.2.1) (Russian in-kind contribution, IHEP Protvino)

- FDR approved
- Material procurement finished
- Production has started

Current leads (PSP 2.8.2.13.1) (German in-kind contribution)

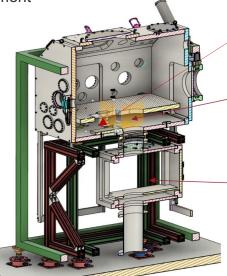

- Supplier contracted (Mark & Wedell)
- FDR expected by the end of March
- Production of first pair scheduled for Q2/22

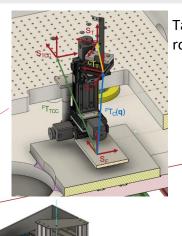
Power supplies (PSP 1.3.2.1.2.2) (German in-kind contribution)

- Contracted to supplier (OCEM)
- Kick-off meeting with system/production details in July 21
- FDR expected in 2-3 weeks

Target chamber (PSP 1.3.2.2): The Target Supply System (TSS) is under development at TU Darmstadt

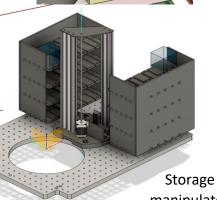
Day-1 target chamber has been delivered and installed at HHT area


Vacuum control system (GSI internal development) operational


First target chamber successfully commissioned

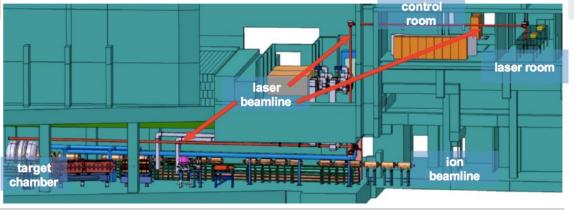
Second target chamber is used to test TSS at TU Da

Control software is under development



Target positioning robot: 4 axes

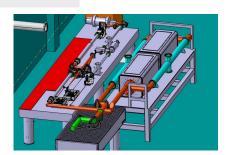
Lift manipulator: Two grippers



manipulator:

2x32 target storage slots

FLAX: First Laser for APPA experiments (PSP 1.3.2.4)



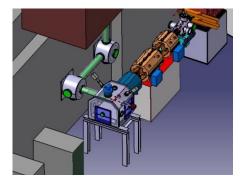
Flash lamp module prototype, TU Darmstadt

- FLAX under construction by PHELIX laser team
- Supported by German university projects (BMBF VBF): Laser frontend (U Jena)
 Prototype main amplifier (TU Darmstadt)
- Option to later on install a short-pulse laser (Helmholtz Beamlines) if funding becomes available

Laser frontend, U Jena

Amplifier prototype, TU Darmstadt

A PHELIX beamline to the HHT experimental area built for coupled laser beam - ion beam experiments in Phase 0


FAIR ES SE

Goals

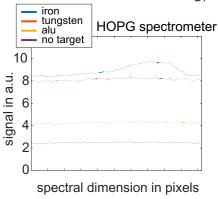
- Enable coupled experiments with laser beams and high-energy ion beams (HIHEX)
- Enable laser-driven volumetric X-ray diagnostics (absorption spectroscopy, radiography, X-ray diffraction, X-ray scattering)
- Commission Day-1 target chamber, laser sources and diagnostics at HHT
- Develop ion position and focus diagnostic

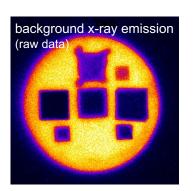
Status of laser beam line construction

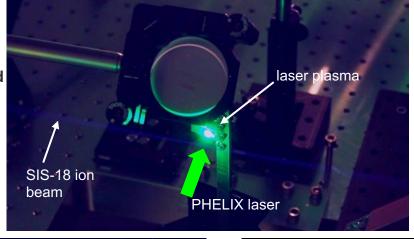
- Project started in 2019 after review by ECE
- Installation finished in spring 2021
- Commissioning performed successfully in 2021
- First laser-/ion-beam coupled experimentsin HIHEX scheme scheduled for April and May 2022

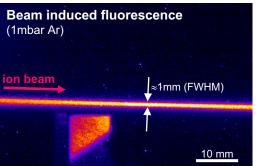
Laser-beam parameters at HHT

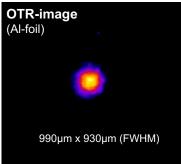
- 200 J
- 527 nm
- 0.33-1 ns,... up to ~10 ns
- 15 cm beam diameter


Clean room




HED@FAIR - Diagnostics development for HED experiments

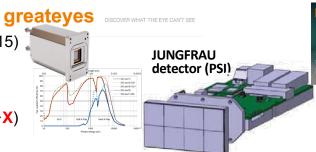



- Target chamber commissioned at HHT with up to 3·10⁹ ions/bunch
- In-focus beam diagnostic (beam induced fluorescence, optical transition radiation), fast imaging pyrometer successfully tested
- PHELIX-HHT laser-beamline commissioned
 - ~50 μm focal spot, good stability, 100 J in HHT target chamber
 - Laser-driven x-ray source
 - Demonstrated x-ray probing of dense samples (diffraction, Thomson scattering)

Optical diagnostics overview

Components	Measurement resolution	Temporal resolution	Spatial resolution	remark	principle	Measurement	
Coupling optics, fibre, filters + photodetectors, fast multi-channel digitizer (Pyrometer)	Δ T/T potientially very small	5 ns (over μs)	>100 μm	Single point	Fibre-coupled photodetectors	Thermal emission	
imaging optics, filters, streak camera	Δ T/T <10% (dep. on T, Δ t)	10 ns (over μs)	50 μm (>2 mm FoV)	Line imaging	Dual-color imaging		
illumination laser, imaging optics, streak camera	<100m/s		<100 μm		Shadowgraphy	Expansion	
Doppler Velocimeter, fast scope	m/s (<1km/s)		100 μm	Single point	Photon Doppler Velocimeter	Displacement	
VISAR setup, streak camera	10m/s (150km/s)		100 μm	Line imaging	VISAR		
Imaging optics, gated intensified camera		5 ns	<50 μm		Gas fluorescence, OTR, scintillators	Ion focus, PRIOR	

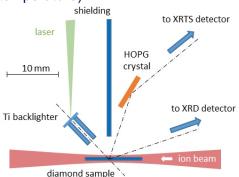
- Gated camera: 2 new (1x GSI, 1x Prof. Jacoby/GUF, BMBF2019)
- Streak camera: 1 from GSI, 1 new (loan from IMP/Lanzhou), application for 1 new by Prof. Spielmann/FSU, BMBF2021
- Pyrometer: new system will be provided by Prof. Winkler/GUF, BMBF2021
- Photon Doppler Velocimeter: 1 (com.), new system will be designed/provided by NRNU/MEPhi
- VISAR: exists at GSI, new system will be designed/provided by NRNU/MEPhi


X-ray diagnostics overview

Components	Spectral resolution	Spatial resolution	remark	principle	Measurement
Curved crystal (e.g. quartz, mica), x-ray CCD camera (50k€), or gated x-ray imager (100k€)	<1 eV (@1.5keV)	>100 μm	Line imaging	Broadband-source, focusing spectrometer	Absorption spectroscopy
Large-aperture HOPG crystal, x-ray CCD camera	10 eV (@6keV)	n/a	Single point	Line-source, spectrally resolved scattering, high collection efficiency	X-Ray Thomson scattering
Scintillator/sCMOS-camera (50k€), or Large-area pixel detector (100k€)	n/a	100 μm	Single point	Line source → Debye- Scherrer on large-area detector	X-Ray diffraction
Scintillator/sCMOS-camera	n/a	< 50μm	Limited in ρr (E_{ph} < 20keV)	Point-source, projection onto area detector	X-Ray radiography

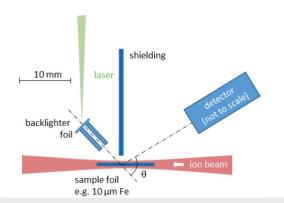
Crystals: several (GSI + Prof. Spielmann/FSU, BMBF2015)

- X-ray CCD: 1 (Prof. Spielmann/FSU, BMBF2015)
- Gated x-ray imager: possibly loan by IMP/Lanzhou
- Scintillator/sCMOS: Prof. Jacoby/GUF, BMBF2019
- Pixel detector: applied for (Prof. Kraus/UR, BMBF2021→X)



Two experiments in HIHEX scheme using combined laser and ion beams at HHT will be carried out in 2022 (S489)

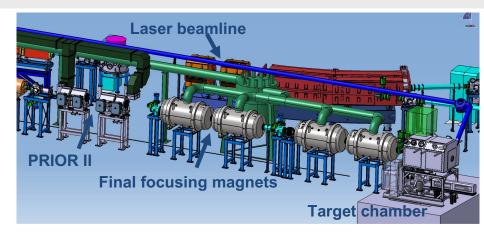
Graphitization of diamond (D. Kraus)


- Heating a diamond turns it into graphite (time scale: minutes)
- Ultra-fast energy deposition in diamond turns it into graphite (time scale: fs!)
- With heavy-ions can do volumetric heating at intermediate time-scale
- → Heavy-ion pulse **heats** diamond sample
- → Laser-produced x-rays probe (x-ray diffraction detects phase transition, x-ray Thomson scattering can measure temperature)

Commissioning experiments at HHT have shown that the laser parameters are sufficient to create the required x-ray source

Super-heating of iron (D. Riley)

- X-ray diffraction experiments at LCLS on shockheated iron had shown significant super-heating
- Compare with heating by heavy-ion pulse (different heating/strain-rate)
- → Heavy-ion pulse heats Fe-foil
- → Laser-produced x-rays probe (x-ray diffraction detects lattice vibration & melting)



HED@FAIR

Preparations for early experiments in the APPA cave

- All TDRs needed for Day-1 experiments have been approved
- Currently all components are on track
- Key components (target chamber, PRIOR-II) have already been commissioned at HHT
- Diagnostics will be tested and optimized in Phase-0 experiments at HHT in combination with PHELIX

HED@FAIR is progressing well for carrying out early experiments in 2025 with SIS-18 beam in the APPA cave