Status of

PANDA

L. Schmitt, GSI/FAIR

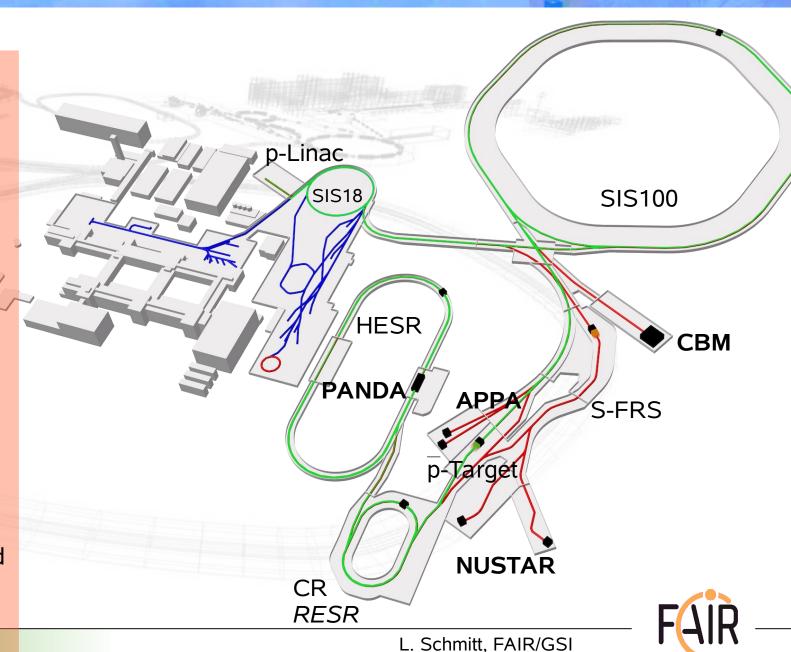
FAIR RRB PANDA Breakout Session Online Meeting, February 22, 2022

General News on PANDA

System Highlights and Updates

Infrastructure Updates

Antiproton Production at FAIR


Antiproton production

- Proton Linac 68 MeV
- Accelerate p in SIS18 / 100
- Produce p on Ni/Cu target
- Collection in CR, fast cooling
- Full FAIR:
- Accumulation in RESR, slow cooling
- Storage in HESR
- PANDA luminosity < 2x10³² cm⁻²s⁻¹
- FAIR MSV:
 - Accumulation in HESR
 - Luminosity 10³¹ cm⁻²s⁻¹

FAIR Intermediate Objective

- North site plus S-FRS, NUSTAR, APPA hall, pBar target
- Work on all accelerators & exp

Buildings for CR, pLinac, HESR and PANDA in construction phase 2

News from PANDA

Contracting

- STT-FT-FEE in-kind contract at work: ASICs delivered, mass testing
- FT contract at work: procurement started
- Preparations for Barrel Muon Detectors CC with Dubna
- Assignment of Czech funds for more EMC PWO crystals

Reports

- DAQT TDR approved
- Infrastructure and Installation report approved
- GEM Tracker TDR draft reviewed, testbeam with RD51 at CERN

Progress highlights

- Solenoid magnet: production of SC strands, first samples exceed specs
- Barrel DIRC: production of PMTs started
- PANDA@HADES Straw Trackers currently in HADES physics run
- PANDA schedule was updated w.r.t. new building schedule in Q1 2021, architectural planning resumes in 2022

PANDA Schedule

Current status

- Construction of many Phase 1 systems has started
- Integration and infrastructure planning progressing
- Delays in several parts due to delayed funding or contracting
- Covid-19 still has effects on the schedule

Installation periods according to present plans:

- Installation period 1: solenoid, dipole, supports etc.
 in parallel with installation of technical building infrastructure
- Installation period 2: all other systems after building completed

Commissioning strategy:

- Device commissioning synchronised with installation
- Experiment commissioning without beam: dry runs, cosmics
- First beam commissioning with protons from SIS18
- → Ready for physics when first antiprotons arrive

PANDA Progress Scorecard

	PANDA	TDR /	Cost [k€ 2005]	% Funding (Sec / RUS / Eol / TBA	Construction	Construction	Test/
		Specs		31 7 7 7		complete	Commissioning
	Cluster Jet Target		771,00			10/2025	
	Micro Vertex Detector (MVD) - Str		2.550,00			01/2025	
	Straw Tube Tracker (STT) (1)		2.603,00			09/2025	
	Planar GEM Tracker - 50%		555,00			03/2025	
	Barrel DIRC		2.782,00			10/2024	
	Barrel Time of Flight (TOF)		310,00			10/2024	
	Forward Tracking (w/o FT 5/6) (1)		1.145,00			08/2025	
	Forward TOF (2)		362,00			12/2024	
~	Barrel EMC System		8.258,00			12/2025	
Day- :	Barrel EMC Crystals - 75% (2)		8.712,00			12/2025	
Δ	Backward Endcap EMC		1.267,00			06/2025	
	Forward Endcap EMC		5.714,00			12/2023	
	Forward Shashlyk Calorimeter (2)		1.447,00			12/2025	
	Luminosity Detector		666,00			03/2025	
	Muon Detectors (2)		2.318,00			06/2024	
	Solenoid		5.800,00			04/2024	
	Interaction Region		151,00			12/2024	
	Infrastructure		2.441,00			06/2024	
	DAQ Hardware (3)		609,00			06/2025	
		99% value weighted	48.461,00	75% 17% 6%	2% 44% value weighted		1% value weighted
	Changes since RRB #10	+7%	-7.7%	+5.6% +1.3% -7.1% -2	0% +5%		

⁽¹⁾ if synergies between STT and Fw. Tracking realise

(3) DAQ computing via operation funds

FAIR

⁽²⁾ if German-Russian Roadmap realised

PANDA TDR Schedule

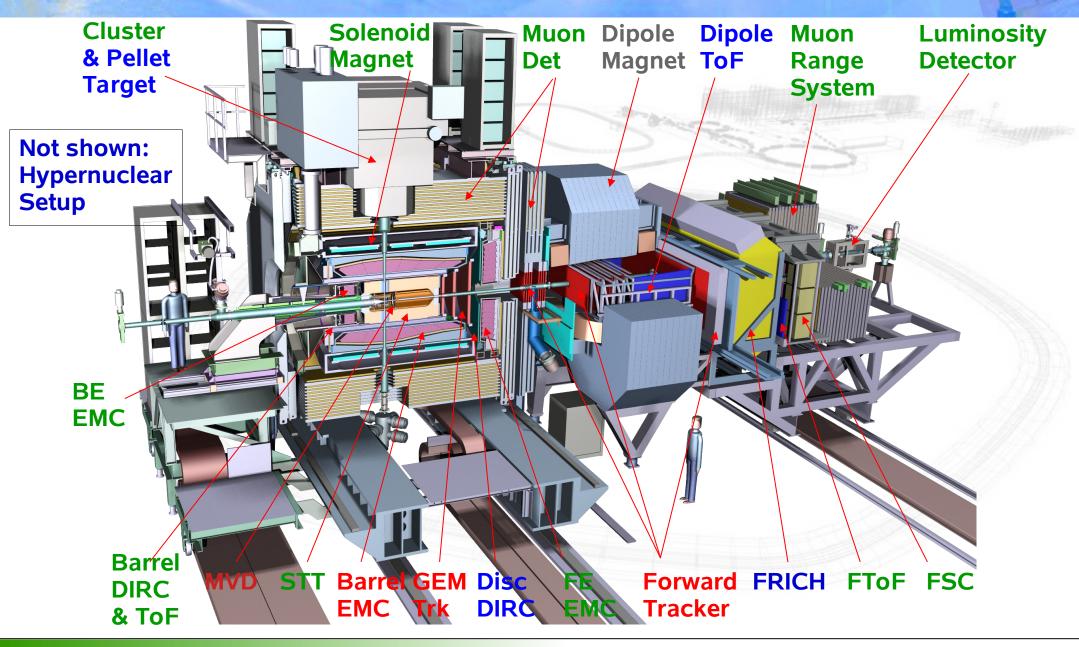
System	Submission Expected	M3 (Approval) Expected M3
PAND	A PHASE 1	
Target Spectrometer EMC		18/08/2008
Update Report		17/06/2021
Solenoid		21/05/2009
Dipole	-	21/03/2009
Micro Vertex Detector (MVD)		26/02/2013
Straw Tube Tracker (STT)		29/01/2013
Cluster Jet Target		28/08/2013
Muon System		22/09/2014
Forward Shashlyk Calorimeter		03/03/2016
Barrel DIRC		20/08/2017
Barrel Time of Flight (TOF)		14/02/2018
Forward TOF		16/10/2018
Forward Tracking		16/10/2018
Luminosity Detector		04/04/2019
Controls		12/10/2020
DAQ		25/08/2021
Infrastructure		17/11/2021
Planar GEM Trackers	3/2022	9/2022
PAND	A PHASE 2	
Endcap Disc DIRC		08/11/2011
Forward RICH	6/2022	12/2022
Pellet Target	6/2023	12/2023
Hypernuclear Setup	7/2022	1/2023

Status 17/11/2021

For the item "Interaction Region" no TDR is planned, only a specification document. Computing TDR together with FAIR Computing TDR.

Phase 1: 15 TDRs approved

- EMC TDR Update Report approved June 17, 2021
- DAQT TDR approved August 25, 2021
- Infrastructure report submitted, in review
- GEM TDR draft passed internal review, work on revision along recommendations

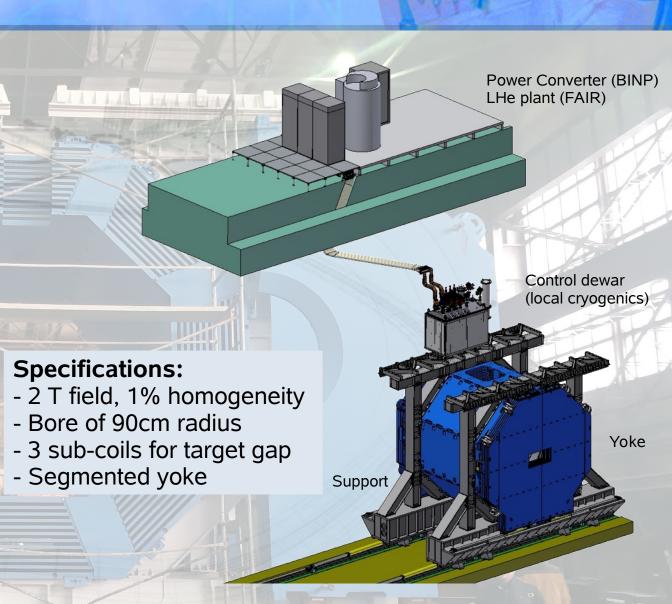

Phase 2: 1 TDR approved

- Disc DIRC: approved Nov 2019
- Pellet Target: in preparation
- Forward RICH
- Hypernuclear Setup

PANDA Day-1 / Phase 1 / Phase 2

PANDA System News

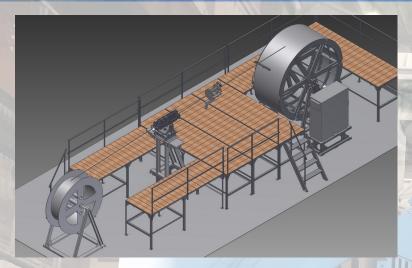
Solenoid Magnet



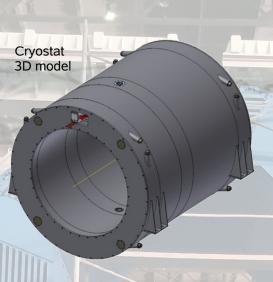
Project Status:

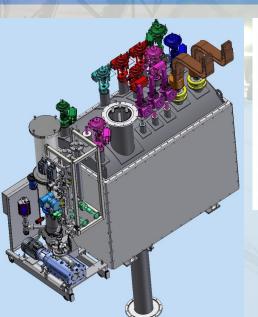
- Contract with BINP since March 2017
- Yoke complete, test assembly done
- Cryostat component procurement ongoing
- Local cryogenics design close to FDR

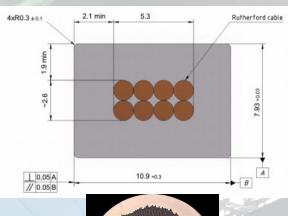
Critical Items:


- Superconductor procurement
 - Contracts signed, purchasing in process
 - First SC strands tested within specs
- Schedule:
 - Coordination of installation at FAIR
 - Field-mapping to be done before at BINP
 - Insertion of muon detectors

Solenoid: Progress




Coil Winding Device


- Design completed
- Tools in production, delivery in December '21

Electrical Systems

- Dump resistor ready
- Power supply units TDK Lambda
- Racks in production
- Bus bars with ATLAS conductor

Cryostat and Cold Mass

- Production at Votkinsk ZA
- QC of welds by BINP controls dept. done
- Oelivery Q2/22

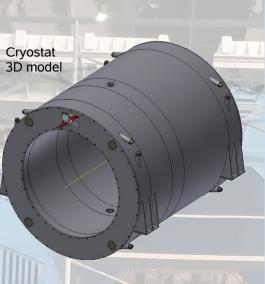
Control Dewar: FDR Q2/22

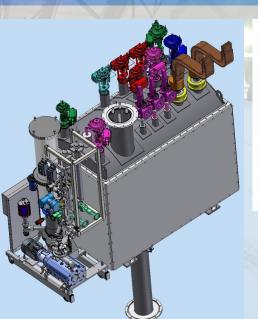
Drawings in preparation for FDR and TÜV

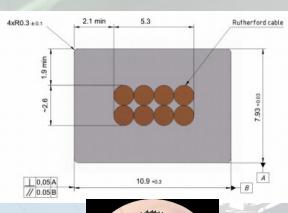
Superconductor Production

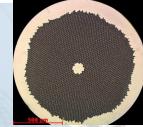
- SC strand production started, first samples better than specs
- Extrusion of pure Al at SARKO, contract for 1km test piece
- Conditioning Al gives good RRR
- Delivery till 12/22

Solenoid: Progress




Coil Winding Device


- Design completed
- Tools in production, delivery in December '21


Electrical Systems

- Dump resistor ready
- Power supply units TDK Lambda
- Racks in production
- Bus bars with ATLAS conductor

Cryostat and Cold Mass

- Production at Votkinsk ZA
- QC of welds by BINP controls dept. done
- Opelivery Q2/22

Control Dewar: FDR Q2/22

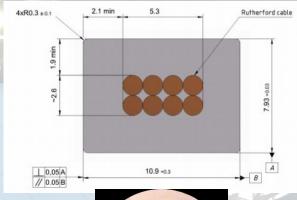
 Drawings in preparation for FDR and TÜV

Superconductor Production

- SC strand production started, first samples better than specs
- Extrusion of pure Al at SARKO, contract for 1km test piece
- Conditioning Al gives good RRR
- Oelivery till 12/22



Solenoid: Progress



Coil Winding Device

- Design completed
- Tools in production, delivery in December '21

Electrical Systems

- Dump resistor ready
- Power supply units TDK Lambda
- Racks in production
- Bus bars with ATLAS conductor

1) Coil Shell

- 2) Shield end-face
- 3) Cryostat flange

Cryostat and Cold Mass

- Production at Votkinsk ZA
- QC of welds by BINP controls dept. done
- Opelivery Q2/22

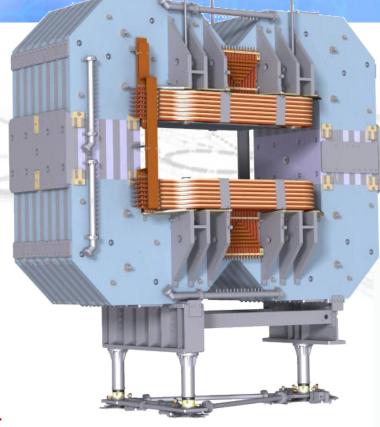
Control Dewar: FDR Q2/22

Drawings in preparation for FDR and TÜV

Superconductor Production

- SC strand production started, first samples better than specs
- Extrusion of pure Al at SARKO, contract for 1km test piece
- Conditioning Al gives good RRR
- Delivery till 12/22

HESR PANDA Chicane Dipole


panda

Specifications:

- Normal conducting Spectrometer Dipole
- Integral component of the HESR
- Beam deflection angle 40 mrad (2.29°)
- Dynamic range 0.2 T·m ... 2.0 T·m
- Ramping speed from 25% to 100% in 60s

Project Status:

- Final report of magnet design received
- Preliminary design of Power Converter started
- Construction contract signed with BINP
- Material procurement and production preparation:
 - Steel order from Magnetogorsk delivered
 - Yoke production contract signed
 - Copper material ordered at Luvata
 - Tooling design for coil winding in progress

tress of Mises, MPa

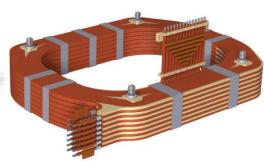
20.12.30 P

220

188,6

157,1

125,7


94,3

62,9

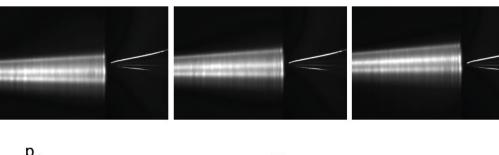
31,4

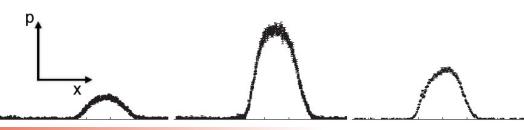
0 Meet

FEM Simulation of support

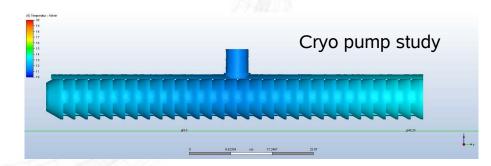
Detailed design of coil

3D CAD of Power Converter


Cluster Jet Target Developments



Experiments at COSY:

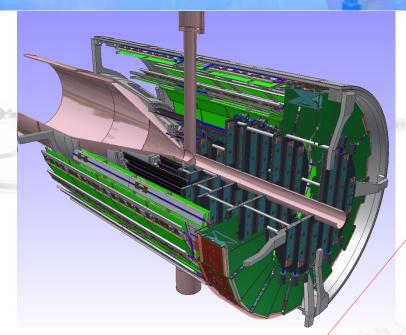

- Studies of beam-target interaction till 2024
- Performance of beam cooling in presence of the cluster jet
- Vacuum situation at IP and improvements
- Latest campaign took place May 2021:
 - 3.0 GeV/c p beam, $2x10^9 5x10^9 \, s^{-1}$, target $1x10^{13} 2x10^{15}$ atoms/cm²
 - ♦ HESR stoch. cooling & barrier bucket cavity: Δp/p = 10⁻⁴ after 100 s
 - MAD-X simulation of beam-target interaction
- Design study for cryo pump prototype
- Automatic nozzle adjustment in development: steady luminosity

Micro Vertex Detector

(Fanda

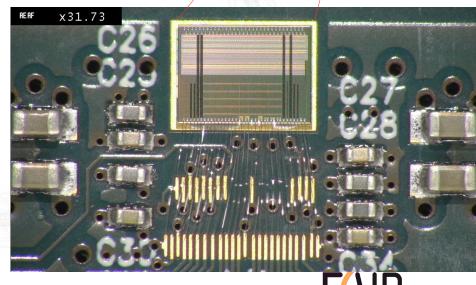
MVD Layout

- Barrel: 2 pixel layers, 2 strip layers
- Forward: 6 disks, 2 mixed strips and pixels
- Advanced mechanical engineering
- ToPix ASIC prototype with full functionality


Pixel part currently on hold

• First priority: strip barrel

- New 64 ch ASIC ToASt for strips:
 - 60 Chips delivered in October
 - Successful chip tests
 - Preparation of SEU tests
- Mechanical design progress at FZ Jülich: stave prototypes produced in autoclave
- Further barrel strip sensors ordered in Gießen

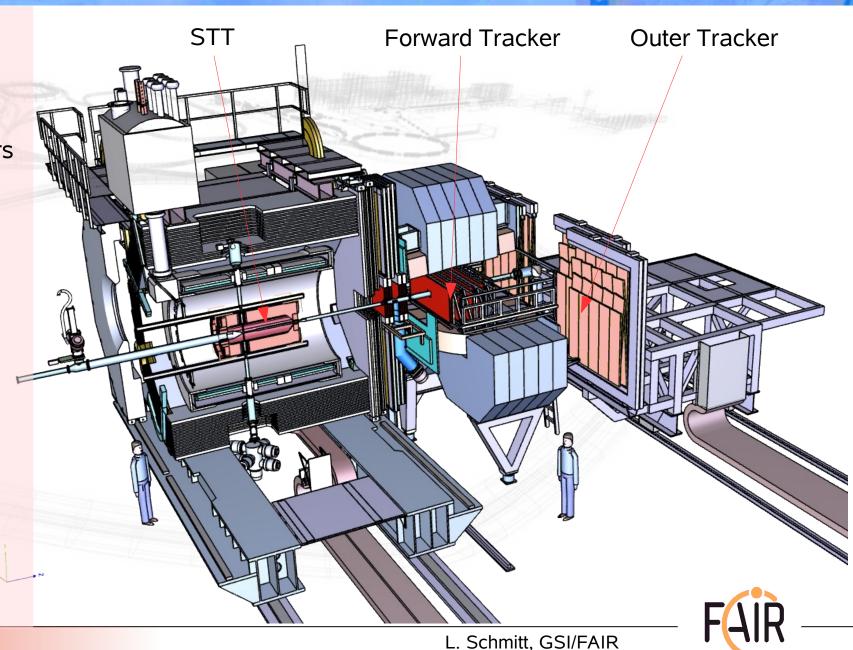

Further progress:

- FE board design at KIT
- MDC ASIC design at KIT

To AST ASIC wire bonded to test PCB

Straw Trackers in PANDA

Central Tracker STT


- 4600 straws, Ø 1 cm
- Ar CO₂ at +1 bar
- 20 parallel layers, 8 skewed layers
- 0.05% X₀/ layer
- ASIC readout

Forward Tracker 1-4

- 2+2 planar stations,5600 straws, Ø 1 cm
- Ar CO₂ at +1 bar
- 4 DL/station (x,u,v,x)
- ASIC readout

Outer Tracker (LHCb straws)

- Inner half length modules 2.4m
- 10800 straws, Ø 0.5 cm
- 0.1% X₀ / layer
- Readout from LHCb + interface

Progress of PANDA Straws

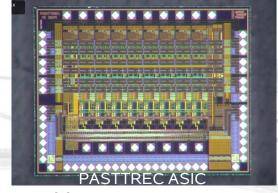
Status of electronic readout (AGH):

- All PASTTREC ASICs delivered
- Mass testing of FEBs
- Est'd FEB yield >94% (PASTTRECs>97%)

PANDA@HADES STS:

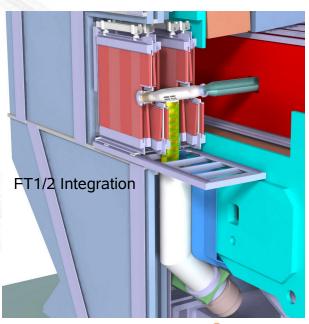
Successful start of physics beam time: online tracking

Central STT design work:

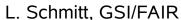

- FEE air cooling design studies
- Preparation of frame assembly

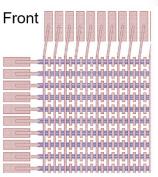
Forward Tracker FT1-4

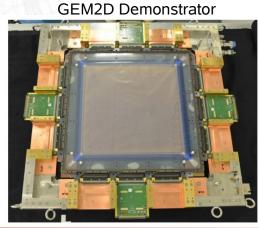
- In-kind contract with JU Krakow, procurement of material started
- Aging studies with varied CO2 and 4 glues
- Detailed mechanical production design in progress

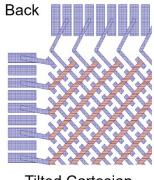

Outer Tracker

- Interface board to connect LHCb FEE ready
- Preparation of system test
- Mechanics design with SLRI, Thailand



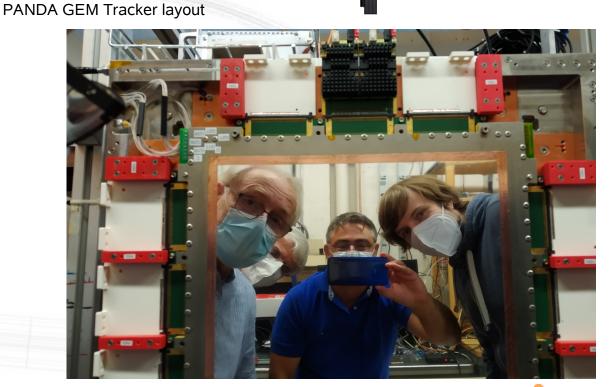





GEM Tracker

- GEM-Production
 - QA, classification & selection
 - Considering available suppliers
- Laboratory tests of framed foils
- GEM-TPC beamtime at FRS 12/19
- Readout design
 - CTR16 prototype ASIC submitted:
 CSA and analog Transient Recorder
 - VMM3 readout from CERN for tests
- TDR draft reviewed by PANDA, recommendations from review

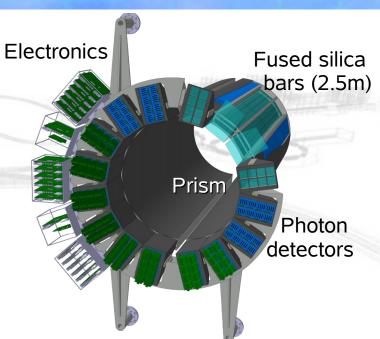
Cartesian ∆ 400µm



Top view

GEM2D in RD51 Lab at CERN

Barrel DIRC


panda

Baseline design

- Fused silica (SiO₂) radiator bars and prisms
- MCP PMT for readout
- Focusing by 3-layer spherical lenses
- Fast readout to suppress BG

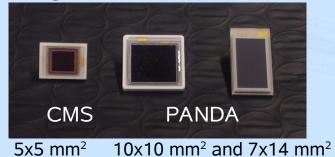
Project status

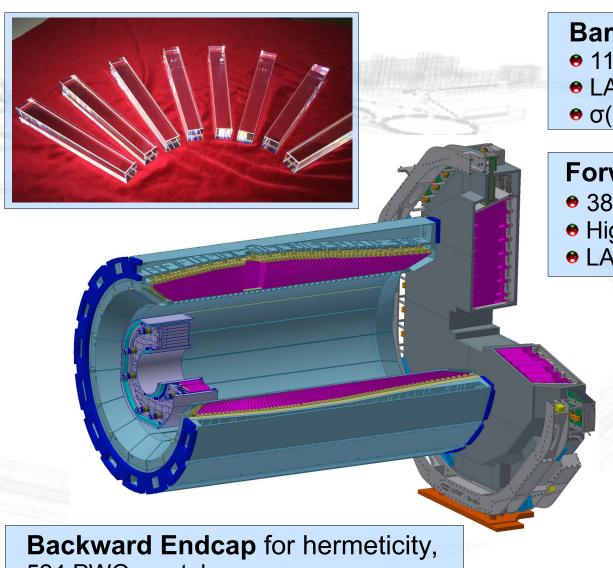
- Series production of DIRC bars at Nikon
- All 112 bars delivered to GSI
 - detailed evaluation ongoing
 - preparation of order for spares
- MCP PMT procurement:
 - evaluation of samples completed
 - order placed 22/12/2020
 - delay due to problems with ALD device
- Prototype lenses received, laser tests at CUA (USA) ongoing
- Phase 0: Participation at GlueX DIRC

GlueX DIRC

Kaleidoscopic image of a HeCd laser beam a DIRC bar on test bench

3-layer lens prototypes


PANDA EMC


panda

PANDA PWO Crystals

- PWO is dense and fast
- Low energy threshold
- Increase light yield:
 - improved PWO II (2xCMS)
 - operation at -25°C (4xCMS)
- Challenges:
 - temperature stable to 0.1°C
 - control radiation damage
 - low noise electronics
- New producer CRYTUR

Large Area APDs

Barrel Calorimeter

- 11360 PWO Crystals
- LAAPD readout, 2x1cm²
- $\sigma(E)/E \sim 1.5\%/\sqrt{E} + const.$

Forward Endcap

- 3856 PWO crystals
- High occupancy in center
- LA APD and VPTT

524 PWO crystals

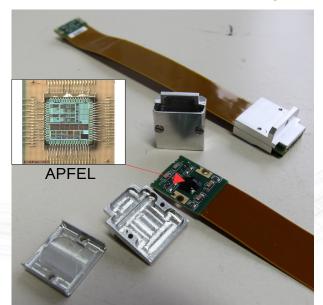
Barrel EMC Status

Mechanics

- All alveoles produced
- First slice fully assembled, cooling implemented
- Installation with annealing LEDs
- Mechanics FDR in preparation

Crystals

- New producer Crytur
- 4000 crystals for Day-1 needed

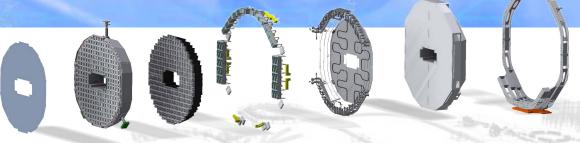


Readout

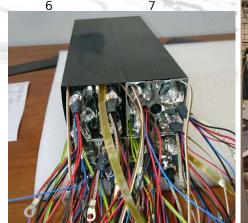
- APFEL ASIC, all available, flex PCBs ordered
- Hit Detection ASIC: ATR16 prototype delivered
- Protocol ASIC for control
- HV regulation board

Services

- Light pulser monitoring
- Stimulated recovery with LED



EMC Endcaps

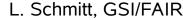



Forward Endcap

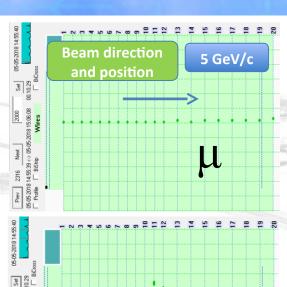
- Assembly of VPTT modules done
- APD modules: ~160/214 done, 3/wk
- 1500 new APDs delivered
- Cosmics calibration at U Bonn
- Front lid, cooling pipes, SADC crates
- Pre-assembly planned at FZJ in '22

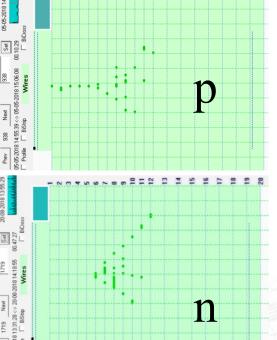
Backward Endcap


- Assembly of Phase 0 system (640 ch instead of 524 for PANDA)
 - All alveoles produced
 - Delays in assembly process
 - Beamtime at MAMI in 2023
 - HV distribution board done
 - Al support plane delivered



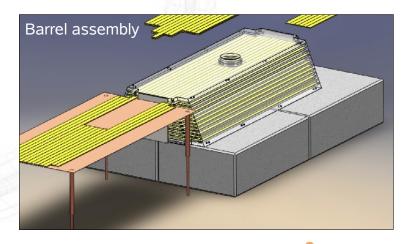
Muon Detectors


(Panda

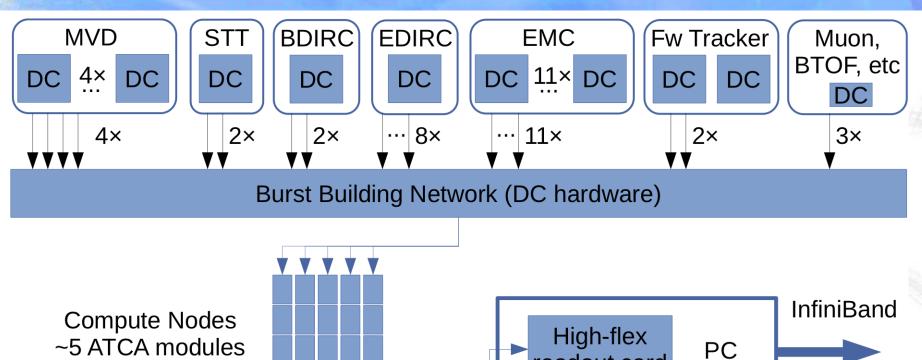

Status

- TDR approved in 2015
- Baseline design ready
- Prototype (10t) test results at CERN:
 μ, p and n easily resolved
- Prototype setup (1.5t) at Nuclotron/JINR

Ongoing activities


- Detailed simulation, PID software
- Digital FEE: Artix FPGA board ready Synergy with NICA SPD
- FAIR Council: first funds for barrel chambers
- Preparation of specs
- JINR PAC approves work
- Renew supplier contacts for components:
 - Al profile extrusion
 - Readout ASICs (Integral, Minsk)
 - Plastic furnishings from Yerevan
- Next step: Collaboration Contract

Range System Prototype at CERN mounted for cosmic tests



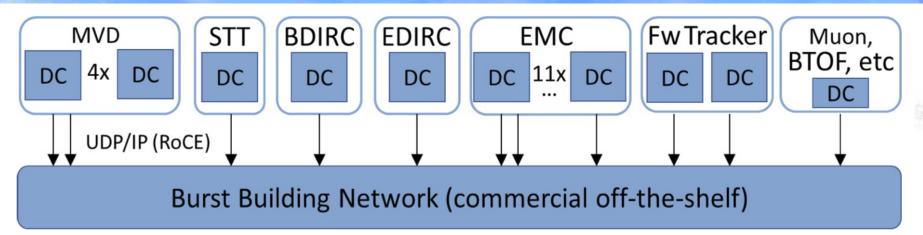
PANDA DAQT

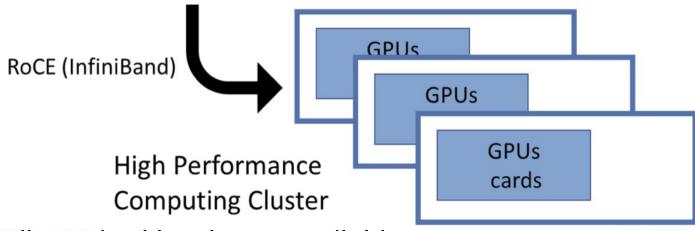
~5 ATCA modules

Full DAQT Scheme for Phase 1/2

- Prototypes for all required hardware available
- Data rate 10 GB/s at Phase 1&2 (<2 MHz rate)
- TDR approved by FAIR August 2021, work by M. Kavatsyuk, RU Groningen

readout card

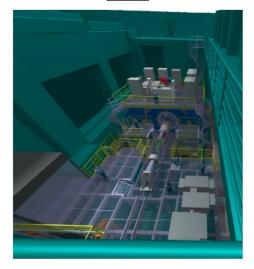

From 2022 DAQT coordination taken over by G. Korcyl, JU Krakow


to HPC

PANDA DAQT

Initial DAQT Scheme for Day-1 and Tests

- Prototypes for all required hardware available
- Data rate 10 GB/s at Phase 1&2 (<2 MHz rate)
- TDR approved by FAIR August 2021, work by M. Kavatsyuk, RU Groningen
- From 2022 DAQT coordination taken over by G. Korcyl, JU Krakow


Updates on Infrastructure

Technical Report for the: PANDA Detector Infrastructure and Installation

Strong Interaction Studies with Antiprotons

May 14, 2020

Continuing work since Infra Report:

Project topics

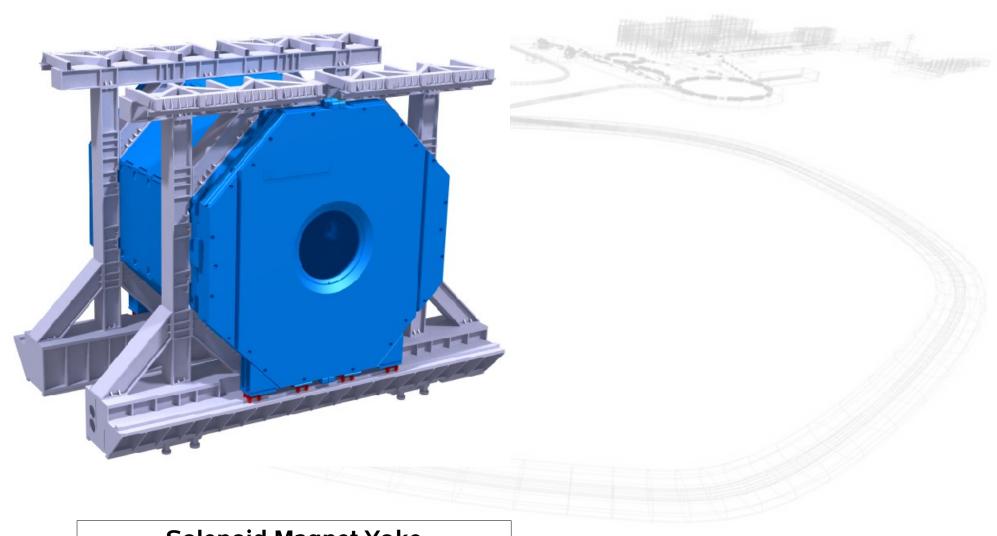
- Safety risk assessment
- Alignment strategy
- Commissioning strategy

Support structures

- Solenoid Platforms
- Installation procedures
- Rack placement

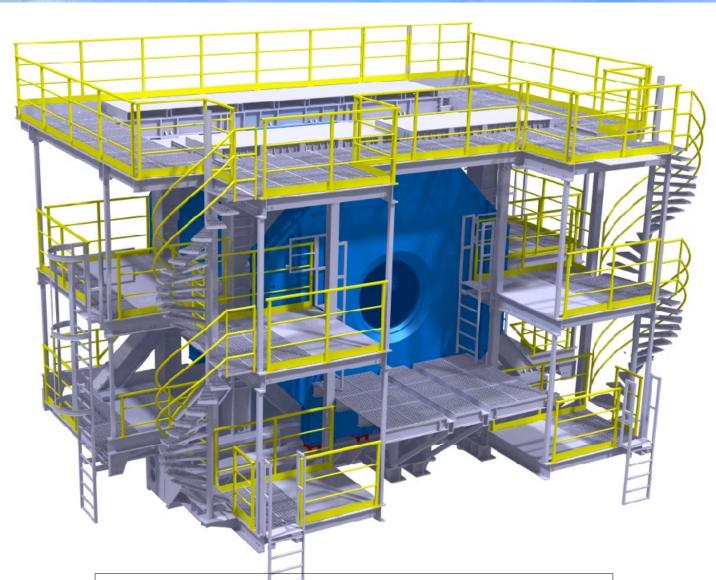
Supply infrastructure

- Leakless rack cooling
- Technical gases


Recommendations by ECE/ECSG:

- Approval of report by FAIR
- Consider as living document to update regularly
- Technical personnel for safety and infrastructure

Solenoid Platforms



Solenoid Magnet Yoke

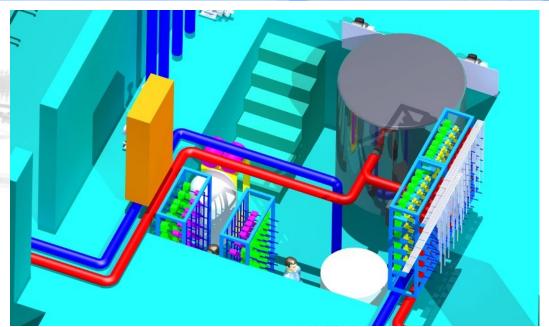
Solenoid Platforms

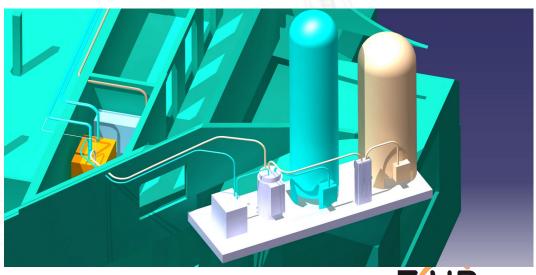
Proposal for an add-on contract for BINP:

- Production of yoke and platforms unified
- Early implementation of interfaces
- Certification of stability in one hand

Solenoid Magnet with additional supports

Supplies: Rack Cooling, LN2 Supply




Planning of under-pressure rack cooling

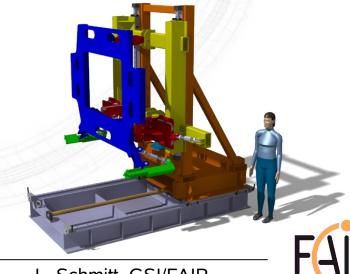
- Distribution circuits planning and seizing
- Pumps and reservoir below floor level
- Under-pressure systems:
 - MVD and EMC detector cooling
 - Rack cooling
- Current layout of pit to small: enlarge 2x
- Pressure drop calculations

LN2 Supply

- LN2 to cool GHe of Solenoid shield in parking position
- LN2 to produce GN2 to flush detectors
- Combine circuits to save LN2 consumption
- Better long cool GHe line than long LN2 line
- (in consultation with FAIR Cryo Dept.)

Supports: CSF and FWE Mounting

panda


Central Space Frame (CSF)

- Interfaces with beam target pipe, MVD, STT, and Barrel DIRC
- Modular construction
- Mix of CFC frame and Al pieces
 Prototype assembled end of 2021
- Load tests in preparation

Forward Endcap Mounting Device

- Common tool to insert into forward endcap of solenoid:
 - Forward Endcap EMC (with and w/o Disc DIRC)
 - GEM Tracker
- Insertion movement on precision rail
- Raising and lowering
- Adjustment of all angles

Conclusion

PANDA Achievements:

- Solenoid construction in full swing, first SC strands, cryostat production
- Barrel DIRC procurement progressing, PMT delivery starting
- Barrel EMC first slice assembled, finalisation of cooling, readout PCBs
- Cluster Jet Target: Tests at COSY with HESR beam cooling successful
- TDRs approved by FAIR: DAQT, Infrastructure
- Forward Tracker component procurement

Upcoming milestones:

- Solenoid:
 - Delivery of cryostat and cold mass spring 2022
 - Super-conductor production to finish by 12/2022
- GEM Tracker TDR 2022
- Barrel Muon Chamber IKC
- Construction MoU and Common Fund

PANDA on track for Day-1, turning risks into opportunities

