MEGA: Medium Energy Gamma-Ray Astronomy Development of a prototype detector; concept for a balloon experiment and a small space mission

Gottfried Kanbach, MPE Garching, Germany

the MEGA Collaboration (Institutions, ca. 2003):

Europe:

MPE, Garching, D, GACE, Valencia, E, IASF, Bologna, I, CESR, Toulouse, F <u>U.S.A.:</u>

UNH, GSFC, NRL, Columbia U., U of Alabama, IGPP-UCR, LANL, Clemson U.

Situation of multi- λ High-Energy astronomy: Severe sensitivity deficit at MeV energies

MEGA Goals:

Imaging, Timing, Spectroscopy, Polarimetry

• Mapping the Sky:

deep, continuous, survey from ~0.3-100 MeV Diffuse and localized sources

Discovery of transient and variable sources

fast: GRBs, transients, SGRs, Novae solar flares, pulsars (periodic) slow: AGN, SNe

• Broadband spectra:

SED characteristic for particles, fields & geometry

• Narrowband spectra:

Cosmic radioactivity with short and long half-lives Nuclear resonance absorption

• Polarization: Pulsars, GRBs, AGN EMMI-WS, GSI, Dec 7-8, 2011

Project Development Plan

- 1. Telescope Design and Simulation (1996-...)
- 2. Detector Development; build a Prototype (1999-2002)
- 3. Test the prototype with lab sources 0.5 4.4 MeV
- 4. Beam Calibration (April/May 2003) 0.7-50 MeV
- 5. Balloon Flight (2004-2005)
- 6. Update Simulations and Background Modelling
- 7. Study advanced detector designs
- 8. Be prepared to propose a MEGA space mission

Project Development Plan

- 1. Telescope Design and Simulation (1996-...)
- 2. Detector Development; build a Prototype (1999-2002)
- 3. Test the prototype with lab sources 0.5 4.4 MeV
- 4. Beam Calibration (April/May 2003) 0.7-50 MeV
- 5. Balloon Flight
- 6. Update Simulations and Background Modelling
- 7. Study advanced detector designs
- 8. Be prepared to propose a MEGA space mission

Prototype and Full-size Instrument

Project Development Plan

- 1. Telescope Design and Simulation (1996-...)
- 2. Detector Development; build a Prototype (1999-2002)
- 3. Test the prototype with lab sources 0.5 4.4 MeV
- 4. Beam Calibration (April/May 2003) 0.7-50 MeV
- 5. Balloon Flight (Spring 2004), NSBF, Ft.Sumner NM)
- 6. Update Simulations and Background Modelling
- 7. Study advanced detector designs
- 8. Be prepared to propose a MEGA space mission

Tracker: 3x3 wafers DSSDs mounted on grid structure

Shadow of 6mm Pb mask irradiated with ⁵⁷Co

Calorimeter Modules

- 120 CsI crystal bars 0.5x 0.5x [2, 4, 8] cm³ / module
- Monolithic 10 x 12 PIN Diode Array with 5x5 mm² pixels (Hamamatsu)
- R/O electronics integrated on the backside of the Hybrids.
- Energy resolution @ 662 keV: ~ 10 % FWHM (3-D)
- Spatial resolution: x-y: pixel size; z:~1.5 cm

Prototype

Tracker:

11 layers with 3x3 DSSDs (ea. 6x6cm², 470µm pitch) Total Si area ~ 4000 cm², ΔE_{FWHM} : > 15 keV @ 122 keV

<u>A_{eff} estimate :</u>

$$A_{eff} = (1 - e^{-\mu d}) A_{geom} \eta$$

= 16 cm² η
with $\eta = 0.4 \times 0.3$
 $A_{eff} \sim 2 \text{ cm}^2$

Calorimeter: 20 modules of 120 CsI(Tl) bars each, 5x5x[20,40,80] mm³ PIN diode readout (Hamamatsu), ΔE_{FWHM} : > 70 keV @ 662 keV Ω fill factor lower hemisphere ~ 40%

Coincidence Electronics

Task: select valid events according to their trigger patterns / initiate configurations and readout

Implementation: FPGA Xilinx-Spartan

Project Development Plan

- 1. Telescope Design and Simulation (1996-...)
- 2. Detector Development; build a Prototype (1999-2002)
- 3. Test the prototype with lab sources 0.5 4.4 MeV
- 4. Beam Calibration (April/May 2003) 0.7-50 MeV
- 5. Balloon Flight (Spring 2004), NSBF, Ft.Sumner NM)
- 6. Update Simulations and Background Modelling
- 7. Study advanced detector designs
- 8. Be prepared to propose a MEGA space mission

Assembly of the MEGA Prototype

Assembly of the Tracker

Assembly of Calorimeter Modules

The search for "hidden sources"

Five sources are hidden in the field of view of MEGA.

Their positions should be retrieved by the means of near-field image reconstruction.

Sources:

- Co60: 2.0 MBq
- Cs137: 4.0 MBq
- Yt88: 70 kBq
- Na22: 51 kBq
- Na22: 1.9 MBq

Finding the hidden sources...

Cs137:

Energy: 620-700 keV, Events: 50000, Iterations: 20, reconstructed position: (-30, 29, 125) cm

Y88:

Energy: 1.6-2.0 MeV, Events: 21000, Iterations: 20, reconstructed position: (15, 9, 51) cm

Co60:

Energy: 1.1-1.4 MeV, Events: 40000, Iterations: 20, reconstructed position: (55, 95, 125) cm

reconstructed position: (-7.5, -28.5, 40.5) cm

200

100

Extended source: setup

Measurement:

Two ⁸⁸Y sources are located on a rotating propeller and perform a circle with radius 7.5 cm

This is equivalent to a circle with 30° diameter at infinity.

Extended source

Image properties:

- Includes tracked and not tracked events, single and multiple Compton events
- Energy range: 0.8 to 1.0 MeV
- Number of events: ~138000
- First hints for a circular structure visible with ~5000 events
- Minor irregularities result from assuption that all detectors have same efficiency

.... "MEGA Supernova remnant"

Project Development Plan

- 1. Telescope Design and Simulation (1996-...)
- 2. Detector Development; build a Prototype (1999-2002)
- 3. Test the prototype with lab sources 0.5 4.4 MeV
- 4. Beam Calibration (April/May 2003) 0.7-50 MeV
- 5. Balloon Flight (2004-2005)
- 6. Update Simulations and Background Modelling
- 7. Study advanced detector designs
- 8. Be prepared to propose a MEGA space mission

The Duke University High Intensity γ-ray Source (HIγS)

...assembly, testing, and installation on the x-y table in the beam area

DUKE Calibration: Measured Energies and Angles Detected events (unit =10³)

	Energies [MeV]											
		0.7	2	5	8	10	12	17	25	37	50	
Angles	0°	300	400	345	255	435	435	435	345	435	1095	
	30°	246		345		525	525	525	390	480	390	
	60°			480		525	705	570	570	570	570	
	80°						480		570	480	480	
	120°			120			165		165	120	165	
	180°			120		165	120			220	240	
	Σ	546	400	1410	255	1650	2430	1530	2040	2305	2940	

IR-mirrors (1. week) ≈ 45 % beam time

UV-mirrors $\approx 70 - 80 \%$ beam time

Total: 15.5 · 10⁶ triggered events

Compton imaging at Duke energies

Compton with tracks

Angular resolution overview (Andreas Z.)

MEGA Prototype field of view @ 50 MeV: imaging of calibration beams from 0° to ~80°

EMMI-WS, GSI, Dec 7-8, 2011

Polarization: Measurement & Simulation

$$\frac{\partial \sigma}{\partial \Omega} = \frac{r_e^2}{2} \left(\frac{E_g}{E_i}\right)^2 \left(\frac{E_g}{E_i} + \frac{E_i}{E_g} - 2\sin^2\varphi \cos^2\chi\right)$$

Azimuthal distribution: $a^{*}cos(2(\chi + \chi_{0}))+c$

Project Development Plan

- 1. Telescope Design and Simulation (1996-...)
- 2. Detector Development; build a Prototype (1999-2002)
- 3. Test the prototype with lab sources 0.5 4.4 MeV
- 4. Beam Calibration (April/May 2003) 0.7-50 MeV
- 5. Preparing a Balloon Flight (2004-2005)
- 6. Update Simulations and Background Modelling
- 7. Study advanced detector designs
- 8. Be prepared to propose a MEGA space mission

MEGABALL Detector Layout

MEGABALL ACS Development

Material: Plastic Scintillator BC-412 (equiv. to NE-110), 0.5 inch Readout: Wavelength Shifting fibers BCF-91A in grooves with 10mm pitch

Detectors: EGRET ACS flight spare PMT units

Lower ACS Plate of the MEGA Balloon Experiment:

Upper ACS Dome of the MEGA Balloon Experiment:

MEGABALL: Detector Platform & ACS

EMMI-WS, GSI, Dec 7-8, 2011

The **MEGABALL*** Balloon Flight

(NSBF, Ft. Sumner, NM, Spring 2004 ?)

Pressure vessel for the MEGA Prototype, ACS & FEC

VME DAQ Batteries & Telemetry,

Total weight of payload ~ 400 kg No active attitude control Attitude measured with a differential GPS

Project Development Plan

- 1. Telescope Design and Simulation (1996-...)
- 2. Detector Development; build a Prototype (1999-2002)
- 3. Test the prototype with lab sources 0.5 4.4 MeV
- 4. Beam Calibration (April/May 2003) 0.7-50 MeV
- 5. Preparing a Balloon Flight (2004-2005)

On October 30, 2003 the MPE directorate decided to cancel further work on the MEGA project!

Gamma-ray astronomy was no longer considered to be part of MPE's science program

Proposing for a German Small Satellite Mission 2000

MEGA

A Telescope for Medium Energy Gamma-Ray Astronomy

Proposal for a DLR Kleinmission 'Extraterrestrische Grundlagenforschung'

August, 2000

Proposing for a German Small Satellite Mission 2000

Prephase-A Study: Instrument

<u>Technical data</u>
of the Instrument

Mass:	650 kg
Power:	214 W
Channels:	134120

pre phase-A study of the Satellite

Technical Data of the Satellite

Mass: Diameter: Length: Power: Telemetry: 950 kg 200 cm 235 cm 350 W online, max. 150 kbit/s (TDRSS - DAS)

Orbit and Mission

Altitude: Mission Time: Inclination: Attitude: Position: 550 km, circ. 3 - 5 years 0° (<28.5°) Zenith-Scan GPS, Starsensors

- Transient sources are detected in real time
- Prompt follow-up observations
- Homogeneous exposure with slight tilting of attitude

<u>MEGA Sensitivity</u> GEANT Simulations incl. Orbital Background

Angular Resolution 2.4° FWHM @ 2 MeV / Source Location: < 2 arcmin Energy resolution 3% FWHM @ 2 MeV Polarization 10% (Crab in 100 h or typical GRB in 100 sec)

Expectations for a MEGA Satellite in a ~3 year lifetime

Source	MEGA	COMPTEL
Pulsars	10	3
Binary Systems Binary Novae Micro-Blazars Jet Sources	5 5 5	1 (Cyg X-1) 1 (N Per 91) 12
Unidentified EGRET Sources	100	4
Radiogalaxies / Seyfert Galaxies	10 - 15	1 (OSSE: 4 / 25)
Blazars	100	10
Novae (⁷ Be, ²² Na, e ⁺ e ⁻ Ann.) Supernovae Ia (⁵⁶ Ni , ⁵⁶ Co, ⁵⁷ Co)	5 / year 2-3 / year	0 1(+1987a, SMM)
young SNR (44Ti)	5?	1(+ 1?)
Gamma Ray Bursts	~0.5 / day	39 (total)
Solar Flares: continuum and lines	depends on cycle	27

Outcome of the DLR Kleinsatelliten AO in 2001:

MEGA was in second place with high scientific credentials (after the astrometry mission DIVA, which turned out to be underfinanced and was later cancelled)

After the 2003 decision to terminate MEGA activities at MPE, the gamma-ray group resumed thinking about an advanced low- to medium energy telescope. The outcome of these studies is known as "GRIPS" (Gamma-Ray Imaging, Polarimetry, Spectroscopy)

 \rightarrow presentation by Jochen Greiner

END