Search for the *N* Δ resonance in the $\gamma d \rightarrow d\pi^+\pi^-$ reaction

Yuichi Toyama B7SD2011

GPPU QE2

Contents

- Introduction
 - Dibaryon
 - About D_{12}
 - Old measurement of the $\gamma d \rightarrow d\pi^+\pi^-$ reaction
 - Goal of this study
- Experiment
 - Research Center for ELectron PHoton Science (ELPH)
 - Neutral Kaon Spectrometer2 (NKS2)
- Analysis & Result
 - Selection of the $\gamma \rightarrow d\pi^+\pi^-$ reaction events
 - Invariant mass & $\cos\theta_d$ distributions
 - Cross section
- Discussions
 - Possible scenarios for 2π production & deuteron emission angle distribution
 - Comparison with the Previous Measurement (NPB79 (1974) 10.)
- Summary & Conclusion
- Memories of GPPU

Introduction

- Dibaryon
- D₁₂
- Old measurement of the $\gamma d \rightarrow d\pi^+\pi^-$ reaction
- Goal of this study

What is "dibaryon"?

isospin

Compact 6 quarks state?

 \mathcal{D}_{IS} \mathcal{D}_{01} \mathcal{D}_{10} \mathcal{D}_{12} \mathcal{D}_{21} \mathcal{D}_{03} \mathcal{D}_{30} BB NN NN NΔ ΔΔ ΔΔ NΔ Mass formula A+6B A+6B A+10B A+10B А А Approx. mass 1878 1878 2160 2160 2348 2348 Molecule state of 2 baryons? WASA/CELSIUS, Virtual state Deuteron WASA at COSY (pp, nn, np) ${}^{3}S_{1}$ d*(2380) ${}^{1}S_{0}$ M = A + B (I(I + 1) + S(S + 1) - 2)A = 1878 MeV B = 47 MeVspin F.J. Dyson and N.H. Xuong, PRL 13 (1964) 815

Predicted 2-baryon states without strangeness

2022/2/8

What is "dibaryon"?

Molecule state of 2 baryons Compact 6 quarks state?

2022/2/8

What is "dibaryon"?

isospin

spin

Compact 6 quarks state?

Predicted 2-baryon states without strangeness

M = A + B (I(I + 1) + S(S + 1) - 2)*A* = 1878 MeV B = 47 MeVF.J. Dyson and N.H. Xuong, PRL 13 (1964) 815

Previous studies of D_{12}

- Experiment
 - B.S. Neganov, L.B. Parfenov, JETP7, 528 (1958).
 - $\pi d \rightarrow pp$ scattering PWA: R. Arndt *et al.*, PRC48, 1926 (1993).
 - $\pi d \rightarrow \pi d$ scattering PWA: R. Arndt *et al.*, PRC50, 1796 (1994).
 - Coupling channel including pp scattering: C.H. Oh et al., PRC56, 635 (1997).
- Theory
 - Bag model: P.J. Mulders, A.T. Aerts, J.J. de Swart, Phys. Rev. D 21 (1980) 2653.
 - Bag model + π cloud correction: P.J. Mulders, A.W. Thomas, J. Phys. G 9 (1983) 1159.
 - πNN three-body Faddeev: A. Gal, H. Garcilazo, Nucl. Phys. A 928 (2014) 73.
 - NN scattering including intermediate dibaryon: M.N. Platonova, V.I. Kukulin, Nucl. Phys. A 946 (2016) 117.

However, D_{12} was a still questionable state.

i.e. kinematical effect or true resonance? (PLB112(1982)17 etc.)

Recent experimental data of photoproduction T. Ishikawa et al., PLB789, 413 (2019)

8

Yuichi Toyama

2022/2/8

GPPU QE2

Old measurement of the $\gamma d \rightarrow d\pi^+\pi^-$ reaction

Benz et al., NPB79 (1974) 10.

Old bubble chamber experiment

- Higher E_{γ} (1.1< E_{γ} <5.3 GeV)
- Limited statistics
- Limited t region (**0.04**<[t]<**0.20 GeV**², lower d momentum (mom_d \lesssim 0.4 GeV/*c*))
- $\boldsymbol{\cdot}$ No peak structure in $d\pi$ invariant mass
 - + ρ^0 and PS dist. reproduce the data
- Differential cross section $d\sigma/dt$ of ρ^0 production
- Total cross section ~6µb (E_{γ} ~1 GeV)

Goal of this study

• Study of a possible dibaryon state, especially N Δ dibaryon via the $\gamma d \rightarrow d\pi^+\pi^-$ reaction.

- Mass & Width
- Deuteron angular distribution
- The cross section measurement of the $\gamma d \rightarrow d\pi^+\pi^-$ reaction.
 - First measurement in this kinematic region (energy and mom_d)

Experiment Oct. 2010

- Research Center for ELectron PHoton Science (ELPH)
- Neutral Kaon Spectrometer 2 (NKS2)

Research Center for ELectron PHoton Science (ELPH)¹²

Experimental condition (2010 NKS2)	
Injection Beam energy	150 MeV
Ring top energy	1.2 GeV
Gamma beam energy	0.78—1.08 GeV

- Location: Sendai, Japan
- Electron Synchrotron
 - Internal target system for γ beam [1]

[1] H. Yamazaki *et al.*, Nucl. Instr. and Meth. A 536 (2005) 70.

GPPU QE2

Neutral Kaon Spectrometer 2 (NKS2)

- $\gamma d \rightarrow d\pi^+\pi^-$
- Data taken in Oct. 2010
- $\cdot E_v = 0.78 1.08 \text{ GeV}$
- liq. D target (516 mg/cm²)
- $N_v = 3 \times 10^{12}$
- Dipole magnet : B ~ 0.42 T, R = 0.8 m
- Hodoscopes (IH and OH): TOF measurement
- MWDC's (CDC and VDC) : Tracking for momentum and vertex finding
- EV: e⁺e⁻ rejection

2022/2/8

• Geometrical acceptance: $\sim 1 \pi$ sr

Neutral Kaon Spectrometer 2 (NKS2)

M. Kaneta et al., NIMA886 (2018) 88

14

Yuichi Toyama

Analysis & Results

- Incident photon analysis
- Drift chamber analysis
- Selection of the $\gamma \rightarrow d\pi^+\pi^-$ reaction events
- Invariant mass & $\cos\theta_d$ distributions
- Acceptance estimation of NKS2
- Cross section

Analysis procedure

2022/2/8

GPPU QE2

Yuichi Toyama

Particle identification

- Momentum and ToF between IH & OH
- π , p, d separation
- Additional info. (dE/dx in IH) for d selection

GPPU QE2

Missing mass

GPPU QE2

- Missing mass for $\pi^{\text{+/-}}$

2022/2/8

Yuichi Toyama

Invariant mass & $\cos\theta_d$ distributions

- Band structure below NA threshold in $M_{d\pi}$
- ρ^0 contribution in $M_{\pi\pi} \sim 0.7$
- d emitted backward

2022/2/8

GPPU QE2

Total cross section

GPPU QE2

• (3 Breit-Wigner + PS background) \otimes Det. Resolution

- Mass & Width of ρ^0 were fixed at 0.77 and 0.15 GeV

Yuichi Toyama

• (3 Breit-Wigner + PS background) \otimes Det. Resolution

- Mass & Width of ρ^0 were fixed at 0.77 and 0.15 GeV

• (3 Breit-Wigner + PS background) \otimes Det. Resolution

- Mass & Width of ρ^0 were fixed at 0.77 and 0.15 GeV

2022/2/8

GPPU QE2

Yuichi Toyama

Mass & Width of the $d\pi$ resonances

GPPU QE2

• ρ^0 free fitting result

2022/2/8

Yuichi Toyama

z = +2, 0 states of D_{12} ?

Discussions

- Possible scenarios for 2π production and deuteron emission angle distribution
- Comparison with the Previous Measurement (NPB79 (1974) 10.)

Possible scenarios for 2π production and $\cos\theta_d$ distribution 28

These are separatable by $\cos\theta_d$ ($\gamma d CM$ frame) distribution

if no isovector dibaryon (conventional), $cos\theta_d$ strong backward peak

2022/2/8

GPPU QE2

Possible scenarios for 2π production and $\cos\theta_d$ distribution

(almost no sensitivity)

2022/2/8

Backward enhanced structure

in |t|>0.15 GeV² region

- But not so steep peak
- · Can not be explained by Senario3 only

 dσ/dΩ > 0.1 µb/sr in cosθd > 0 ⇒ unconventional process (i.e. Dibaryon)

GPPU QE2

Comparison with the Previous Measurement (NPB79 (1974) 10.) ³⁰

Our kinematic region sensed unconventional process.

GPPU QE2

Yuichi Toyama

Summary & Conclusion

- The first measurement of the cross section of the $\gamma d \rightarrow d\pi^+\pi^-$ reaction in |t|>0.15 GeV² region
 - *E_γ* : 0.78—1.08 GeV
 - Total cross section: ~2µb (almost flat)
- Isovector resonance structure (R_{IV}) in $d\pi^{+/-}$ invariant mass
 - M=2.1329 \pm 0.0008 (stat.) \pm 0.0085 (syst.) GeV < M_N+M_{Δ}~2.17 GeV
 - Γ =0.1033±0.0021 (stat.)±0.0092 (syst.) GeV < Γ_Δ~0.12 GeV
 - Consistent with FOREST (M=2.14 \pm 0.01, Γ =0.09 \pm 0.01 GeV)
 - z=+2, 0 state of D_{12}

Memories of GPPU...

Newport News (US) in Jul. 2018

Portsmouth (US) in Jul. 2018

THATZ YOUR

Sendai (JP) in Feb. 2020

Outlook

- Spin and Parity of R_{IV}
 - decay angular distribution analysis

- Measurement of Deuteron with Lower Momentum
 - d ID by only VDC
- Measurement of and with Higher Incident Photon Energy
 - By-product of the $\gamma d \rightarrow d\pi^+\pi^-\pi^0$ measurement (η'd nuclei search)

