Background study for $p\bar{p} \rightarrow p\bar{p}(el.)$

Anastasia Karavdina

KPH, Uni Mainz

December 9, 2011

$p\bar{p} \rightarrow \pi^{-}\pi^{+}$ generator (by M.Zambrana and D.Khaneft)

- \bar{p} momentum range from 0.79 GeV to 12.0 GeV (LAB)
- Low energy regime (0.79 2.43 GeV) experimental data
- High energy regime (5.0 12.0 GeV) theory predictions

DPM vs. $p\bar{p} \rightarrow \pi^{-}\pi^{+}$ by M.Zambrana and D.Khaneft

Generators output

pp cross section

Strategy

- Generation of background with DPM: $\theta \subset (0, 2\pi)$, large statistic
- Reconstruction tracks in the luminosity monitor: anti-proton assumption
- Comparison reconstructed and MC information (+anti-proton and bkg signal)
- Cut(s) proposal for background suppression

Beam Energy 1.5 GeV		Beam Energy 4.06 GeV	
Num. of trks	Process	Num. of trks	Process
330	$\pi^-\pi^+\pi^0$	1020	$\pi^0 p \bar{p}$
161	$2\pi^{-}2\pi^{+}$	272	$\pi^{0}2\pi^{-}2\pi^{+}$
151	$\pi^{0}2\pi^{-}2\pi^{+}$	190	$\pi^-\pi^+ p ar p$
149	$2\pi^{0}\pi^{-}\pi^{+}$	180	$2\pi^{-}2\pi^{+}$
116	$\pi^0 p \bar{p}$	162	$\pi^{-}\pi^{+}n\bar{n}$
65	$\pi^{-}\pi^{+}$	156	$2\pi^{0}\pi^{-}\pi^{+}$
54	$4\pi^{0}\pi^{-}\pi^{+}$	150	$2\pi^{0}2\pi^{-}2\pi^{+}$
47	$\pi^{-}\pi^{+}3\pi^{0}$	117	$\pi^{-}\pi^{+}\pi^{0}$
41	$2\pi^{0}2\pi^{-}2\pi^{+}$	73	$\pi^{-}\pi^{+}3\pi^{0}$
37	$2\gamma\pi^{-}\pi^{+}$	47	$\pi^{-}2\pi^{+}n\bar{p}$
19	$2\gamma\pi^{-}\pi^{+}\pi^{0}$	46	$\gamma 2\pi^- 2\pi^+$
19	$2\gamma 2\pi^- 2\pi^+$	34	$2\gamma\pi^{-}\pi^{+}\pi^{0}$

P, θ , ϕ and vertex for P_{beam} =8.9 GeV/c (θ_{min} =1.75mrad)

MC track, reconstructed track, reconstructed \bar{p} track

Background channels

Dominant bkg channels, Beam Energy 15 GeV, $2 \cdot 10^7$ events

Channel	# of rec. tracks	ratio to rec. \bar{p} , %
р <u></u> р	628333	100
$\bar{n}\pi^-p$	5111	0.813422
$\bar{n}\pi^{-}2\gamma p$	384	0.0611141
$ar{n}\pi^-\pi^0p$	4017	0.639311
$ar{p}2\pi^0\pi^+$ n	1361	0.216605
$ar{p}\pi^-\pi^+p$	5275	0.839523
$ar{m{p}}\pi^-\gamma\pi^+m{p}$	563	0.0896022
$\bar{n}2\pi^{-}\pi^{+}p$	6085	0.968436
$ar{n}2\pi^-\gamma\pi^+$ p	409	0.0650929
$\bar{n}K^{-}\pi^{-}\pi^{+}p$	372	0.0592043
$ar{p}\pi^-2\pi^0\pi^+$ p	2660	0.423342
$\bar{p}\pi^- 2\pi^0 2\pi^+$ n	723	0.115066
$ar{p}2\pi^-2\pi^+$ p	518	0.0824404
$ar{p}2\pi^-\gamma 2\pi^+$ p	440	0.0700266
$\bar{p}2\pi^-\pi^02\pi^+p$	657	0.104562
$\bar{n}3\pi^{-}\pi^{0}2\pi^{+}p$	314	0.0499735
$ar{ ho}K^+\Lambda$	265	0.0421751

Particle	# of rec. tracks
\bar{p}	661161
K^-	79
π^{-}	1931
e ⁻	5
e^+	4
π^+	21
р	18

 $p\bar{p} \rightarrow p\bar{p}$ had 628333 events \rightarrow 32828(5%) \bar{p} tracks came from different process! $2\cdot 10^7$ events with DPM were generated

$$\frac{dN}{dt} = \sigma \cdot L \to \tilde{N} = \sigma \cdot \tilde{L} \cdot t$$

$$\tilde{L} = 2 \cdot 10^{32} \frac{1}{cm^2 s}$$
 (High lumi mode)
 $\sigma = (100 - 51)$ mb
 $t = \frac{2 \cdot 10^7}{2 \cdot 10^{32} (100 - 51) \cdot 10^{-27}} = (1 - 2)$ s

 $\sigma_{el} = \sigma_{Col} + \sigma_{int} + \sigma_{had}$

Coloumb scaterring diverges for $\theta \to 0$ and one needs θ_{min} to fix it. No measurements available in that theta range.

DMP uses ratio $\frac{\sigma_{el}}{\sigma_{tot}}$, which doesn't depend on θ_{min} This mean that σ_{el} is always the same, but $\frac{\sigma_{Col}}{\sigma_{had}}$ depends on θ_{min}

On one hand σ_{had} shouldn't depend on θ_{min} , on the other hand from experiment only σ_{el} is known.

DPM normalization problem: Example

To be continued...

M.Zambrana, D.Khaneft (2011)

twoPionGen: a Monte Carlo event generator for $\pi^+\pi^-$ production on $p\bar{p}$ interactions

H.Koch (2004)

Hadron Physics

Varenna June 2004