

Probing nuclear matter under extreme conditions with dileptons in heavy-ion collisions

Goethe-Universitaet Frankfurt am Main, Germany

Nuclear matter in the universe

At high *T*, $\mu_{\rm B}$:

- Deconfinement phase transition: quark-gluon plasma (QGP)
- Chiral phase transition ($< q\bar{q} > = 0$) Accessible through heavy-ion collisions: high T and $\mu_{\rm B} = 0$ at the LHC

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Predicted at $T_c \approx 160$ MeV for $\mu_B = 0 \rightarrow QGP \ 100 \ 000$ times hotter than the center of the sun

Heavy-ion collisions

Heavy-ion collisions at the LHC:

- Little Big Bang in the laboratory: high T and $\mu_{\rm B} = 0$ regime accessible by lattice QCD
- Highest-temperature, longest-lived experimentally accessible QGP

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Hadron Gas

Electromagnetic probes

Real and virtual photons produced at all stages of the heavy-ion collision with negligible final-state interactions \rightarrow Probe the *interior* of the heavy-ion collisions \rightarrow Carry information from the whole space-time evolution of the system

Real photons: larger cross sections Virtual photons: additional invariant mass m_{ee} variable \rightarrow disentangle contributions in time

Electromagnetic probes

Can study with thermal radiation:

- From the quark-gluon plasma ($q\bar{q} \rightarrow e^+e^-...$): **Deconfinement**
- From the hot hadron gas ($\pi^+\pi^- \to \rho \to \gamma^* \to e^+e^-...$): Chiral symmetry restoration

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Chiral symmetry

- Chiral symmetry property of Quantum-ChromoDynamics:
- In vacuum:
 - Chiral symmetry broken
 - Order parameter of chiral symmetry $\langle q\bar{q} \rangle \neq 0$
 - Origin of mass:
 - Naked quark masses: Higgs mechanisms < 2% of visible mass
 - Constituent quark masses: chiral symmetry breaking > 98% of visible mass

Chiral symmetry

- Chiral symmetry property of Quantum-ChromoDynamics:
- In vacuum:
 - Chiral symmetry broken
 - Order parameter of chiral symmetry $\langle q\bar{q} \rangle \neq 0$
 - Chiral partners have \neq mass Hadrons with same spin but opposite parity

Chiral partner splitting in vacuum (Pseudo-scalar/scalar and vector/axialvector)

Vector mesons decay into $e^+e^-/\mu^+\mu^-$

Chiral symmetry

- Chiral symmetry property of Quantum-ChromoDynamics
- At high T:
 - Chiral symmetry restored: $\langle q\bar{q} \rangle = 0$ Lattice QCD calculations: partially restored in confined phase
 - Chiral partners have = mass and mix: Medium modifications of vector/axialvector spectral functions
- In heavy-ion collisions:
 - Modifications ρ spectral function in the hot medium
 - Thermal production of ρ

Observed first at SPS energies CERES/NA45, PRL 91 (2003) 042301, NA60 PRL 96 (2006) 162302

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Raphaelle Bailhache

P.M Hohler and R. Rapp, Phys. Lett. B 731 (2014) 103 8

Deconfinement: temperature of QGP

- Invariant mass (M_{ee}) use to disentangle:
 - Thermal e^+e^- from hot hadron gas
 - And thermal e^+e^- from QGP
- At intermediate invariant mass: Black-body radiation from static source $\approx e^{-E/T}$

Here from the QGP integrated over space-time \rightarrow Access to early QGP temperature

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Deconfinement: temperature of QGP

- Invariant mass (M_{ee}) use to disentangle:
 - Thermal e⁺e⁻ from hot hadron gas
 - And thermal e⁺e⁻ from QGP
- At intermediate invariant mass: Black-body radiation from static source $\approx e^{-E/T}$

Here from the QGP integrated over space-time \rightarrow Access to early QGP temperature

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

NA60, AIP Conf.Proc. 1322 (2010) 1, 1-10 HADES, Nature Physics 15 (2019) 10, 1040-1045 ALICE, CERN-LHCC-2019-018 CBM, Nucl. Phys. A 982 (2019) 163 NA60+, SPSC-EOI-019 R. Rapp et al., Phys. Lett. B 753 (2016) 568 T. Galatyuk et al., Eur. Phys. J. A52 (5) (2016) 131 Lattice QCD, Phys. Lett. B 795 (2019) 15 SHM, Nature 561 (2018) 7723, 321-330

Early temperature no accessible with hadrons → Temperature at chemical freeze-out

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Hadron Gas

Hadronic decays

11

Thermal radiation from the medium are not the only source of e^+e^- !

In addition:

- Correlated heavy-flavour hadron decays
- Drell-Yan (negligible at LHC energies)

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Hadron Gas

Hadronic decays

Thermal radiation from the medium are not the only source of e^+e^- !

• Light-flavour hadron decays \rightarrow Can be estimated from measured hadron spectra

In addition:

- Light-flavour hadron decays
- Correlated heavy-flavour hadron decays (very large at LHC energies)
 - \rightarrow weak decays displaced from the interaction point
- Drell-Yan (negligible at LHC energies)

Thermal radiation from the medium are not the only source of e^+e^- !

In addition:

- Light-flavour hadron decays
- Correlated Heavy-flavour hadron decays
- Drell-Yan \rightarrow Negligible at LHC energies

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Thermal radiation from the medium are not the only source of e^+e^- !

Thermal radiation from the medium are not the only source of e^+e^- !

In addition:

- Light-flavour hadron decays
- Heavy-flavour hadron decays
- Drell-Yan (negligible at LHC energies)

adium are not the only course of a^+a^-

Main sources in proton-proton collisions (no thermal radiation)

In addition:

- Light-flavour hadron decays
- Heavy-flavour hadron decays
- Drell-Yan (negligible at LHC energies)

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Thermal radiation from the medium are not the only source of e^+e^- !

Modified in p-Pb (cold-nuclear matter effect) and Pb—Pb (hot and cold-nuclear matter effect)

A Large Ion Collider Experiment

- Tracking, vertexing, particle identification
- Tracking and particle identification
- Time-Of-Flight Particle identification

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Raphaelle Bailhache

17

Baseline in proton-proton collisions

- pp collisions at the same $\sqrt{s} = 5.02$ TeV
- Data ($p_{\rm T,e}$ > 0.2 GeV/c) fully described by hadronic sources
 - Light-flavour hadron decays
 - J/ψ decays
 - Correlated open-charm and open-beauty hadron decays

Baseline in proton-proton collisions

and fitted to the data in $m_{\rm ee}$ and $p_{\rm T,ee}$ in this range

linked to the $Q\bar{Q}$ production mechanisms

Dileptons complementary probe to study heavy-flavour physics at the LHC

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

ALI-PUB-347516

Raphaelle Bailhache

3

Dielectrons in proton-lead collisions

- p—Pb collisions at the same $\sqrt{s_{\rm NN}}$ = 5.02 TeV
 - Input from independent measurements for the light-flavour and J/ψ contributions
 - Heavy-flavour cocktail assuming simple scaling with the number of binary nucleon-nucleon collisions from pp to p-Pb
 - → Deviation from vacuum expectation seems to be below the sensitivity of the data

Dielectrons in proton-lead collisions

- p—Pb collisions at the same $\sqrt{s_{\rm NN}}$ = 5.02 TeV
- Input from independent measurements for the light-flavour and J/ψ contributions
- Heavy-flavour cocktail assuming simple scaling with the number of binary nucleon-nucleon collisions from pp to p-Pb
 - → Deviation from vacuum expectation seems to be below the sensitivity of the data

Possible small contributions from thermal radiation \rightarrow Important to disentangle different e^+e^- sources

Topological separation

 \rightarrow Expect better separation power in Run 3 and beyond

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

DCA_{ee} (prompt) < DCA_{ee}(charm) < DCA_{ee}(beauty)

Separate thermal radiation from heavy-flavour background

Central lead-lead collisions

- Study on going in central Pb—Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV (Here: only 30% of the Run 2 data, no use of DCA_{ee})
- Hint for a low-mass enhancement Factor 1.15 ± 0.18 (stat.) ± 0.31 (syst.) ± 0.17 (cocktail) in 0.15 < m_{ee} < 0.7 GeV/ c^2 \rightarrow Additional thermal radiations not in the cocktail
- Indication for charm suppression at intermediate mass ($1.1 < m_{ee} < 2.5 \text{ GeV/c}^2$)

Mandatory to use DCA_{ee} to control heavy-flavour background

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Peripheral lead-lead collisions

• e⁺e⁻ at very low pair momenta in 50-70% and 70-90% most peripheral Pb—Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

\rightarrow Clear excess over hadronic sources

- Lorentz-contracted passing nuclei produce electromagnetic fields:
 - Strongest in the known universe (Up to 10¹⁵ Tesla, maximum electric field $\approx Ze\gamma_{\rm L}/b^2$)
 - Acting over a very short timescale (10^{-25} s at LHC)

Peripheral lead-lead collisions

• e⁺e⁻ at very low pair momenta in 50-70% and 70-90% most peripheral Pb—Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

\rightarrow Clear excess over hadronic sources

• Lorentz-contracted passing nuclei produce electromagnetic fields:

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

ALICE timeline

Long Shutdown 2 ALICE 2

Time Projection Chamber

- GEM-based chambers
- New front-end electronics
- \rightarrow Factor > 50 higher acquisition rate

New and upgraded central detectors Continuous readout of Pb—Pb at 50 kHz \rightarrow 13 nb⁻¹ in Run 3 & 4

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Inner Tracking System 2 Better pointing resolution (x3 in xy, x6 in z)

O2 Computing Farm

- Online Processing of all events
- Relevant for experiments at LHC, FAIR

LHC pilot beam

pp collisions in October 2021 at \sqrt{s} = 900 GeV

- Upgrades completed and detector performance confirmed
- Continuous readout and synchronous reconstruction verified

= 900 GeV tor performance confirmed onous reconstruction verified

Physics prospects Run 3&4

- Anomalous soft-photon and -dilepton excess in hadron-hadron collisions at lower energies reported by several experiments
- Data taken with a reduced ALICE solenoid magnetic field to 0.2 T \rightarrow Unique sensitivity to soft e^+e^- production at the LHC

First results from Run 2 low-B field data at LHC energies: \rightarrow Data above the hadronic cocktail by a factor: 1.61 ± 0.13 (stat.) ±0.17 (syst.) ±0.34 (cocktail) in 0.14 < m_{ee} < 0.6 GeV/ c^2 & $p_{T,ee}$ < 0.4 GeV/c

V. Hedberg PhD thesis, Lund (1987); DLS Collaboration, Phys. Rev. Lett. 61 (1988) 1069-1072; M.R.Adams et al. Phys, Rev. D27 (1983) 1977-1998; K.J. Anderson et al. Phys. Rev. Lett 37 (1976) 700-802; A.Belogianni et al. Phys.Lett. B548 no. 3 (2002) 122-128,129-130; J.Antos et al. Z. Phys. C59 (1993) 547-554

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

ALICE Phys. Rev. Lett. 127 (2021) 042302

Physics prospects Run 3&4

- Anomalous soft-photon and -dilepton excess in hadron-hadron collisions at lower energies reported by several experiments
- First results from Run 2 low-B field data at LHC energies: \rightarrow Charged particle multiplicity dependence of the excess

Increase statistics by a factor 400 in Run 3 & 4 \rightarrow Allows precise multi-differential analysis

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

ALICE Phys. Rev. Lett. 127 (2021) 042302

multiplicity pp events

Physics prospects Run 3&4

At the end of Run 4:

- Time-averaged QGP radiation
- Patterns indicative of chiral symmetry restoration

Fundamental questions will remain open, among them:

- Partonic equation of state and its temperature dependence
- Underlying dynamics of chiral symmetry restoration

\rightarrow Call for a next-generation heavy-ion experiment

Z. Citron et al CERN-LPCC-2018-07

Excess m_{ee} spectrum over cocktail in Run 4

ALI-SIMUL-306852

- Compact all-silicon tracker in super-conducting magnets
- Particle identification for -4 < η < 4:
 TOF, RICH, Calorimeter, MUON
- Measure real and virtual photons at very low $p_{\rm T}/m_{\rm ee}$ (Forward converter Tracker for very low $p_T \gamma$)

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

- Compact all-silicon tracker in super-conducting magnets
- Particle identification for $-4 < \eta < 4$: **TOF, RICH, Calorimeter, MUON**
- Measure real and virtual photons at very low $p_{\rm T}/m_{\rm ee}$ (Forward converter Tracker for very low $p_T \gamma$)

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Could be installed in ALICE L3

33

Tracker

- Larger/longer MAPS-based tracker than ITS
- Retractable vertex detector
 - Inside of the beam pipe in secondary vacuum
 - Position of the first layer at mid-rapidity:
 - Closed: *r* = 5 mm (Run 4: 18mm)

ALI-SIMUL-491681

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Tracker

- Larger/longer MAPS-based tracker than ITS
- Retractable vertex detector
 - Inside of the beam pipe in secondary vacuum
 - **Position of the first layer** at mid-rapidity:
 - Closed: *r* = 5 mm (Run 4: 18mm)

Background rejection

ALI-SIMUL-498024

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

QGP thermal radiation and T measurements for $m_{ee} > 1.4 \text{ GeV/}c^2$ limited with ALICE 2 \rightarrow significant improvement with ALICE 3

Physics performance studies ongoing

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Non-dielectron physics topics not covered here...

ALICE 3 Workshop https://indico.cern.ch/event/1063724/

Summary and Outlook

First dielectron results with ALICE RUN I and RUN 2 data... ... and a lot more to come with the next data-taking campaigns

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Central lead-lead collisions

- Pioneering study in central Pb—Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV (Run 1 data, no use of DCA_{ee})
- Hint for a low mass enhancement Factor 1.38 ± 0.28 (stat.) ± 0.08 (syst.) ± 0.27 (cocktail) in 0.15 < m_{ee} < 0.7 GeV/ c^2
- Data compatible with:
 - Vacuum cocktail
 - But also models including thermal radiation No sensitivity yet

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Soft dielectron production in pp at $\sqrt{s_{NN}} = 13$ TeV

Acceptance corrected excess yield compared to theory predictions:

Data reproduced:

- Neither by calculations for bremsstrahlung from initial- and final-state hadrons
- Nor by predictions for thermal dielectron production

ALICE Phys. Rev. Lett. 127 (2021) 042302

Raphaelle Bailhache

41

Peripheral Pb—Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

Detector overview

- Cover -4 < η < 4 rapidity range
- Trackers
 - At mid-rapidity: 11 layers with **first layer at 5mm** (ITS3: 18mm)
 - At forward- and backward-rapidity: 2x12 discs
- Particle identification at mid-rapidity:

 - Outer TOF and RICH at about 1m: eID for p < 2 GeV/c, K and p up to 10 and 15 GeV/c
 - Pre-shower or ECAL detector: eID at larger p, photons

Ultra-soft photons with Forward Converter Tracker

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

• Inner TOF at 20 cm: electron identification (eID) down to $p_T = 0.015$ GeV/c for B = 0.5 T (ALICE: 0.075 GeV/c for B = 0.2 T)

Raphaelle Bailhache

40

Dielectron excess Chiral symmetry restoration

- Subtract hadronic light-flavour (LF) cocktail and residual heavy-flavour background
- Additional source of uncertainties from the subtraction Exact numbers under investigation
- Comparison with different ρ spectral functions:
 - Vacuum ρ spectral function
 - In medium ρ spectral function w/o ρ -a₁ chiral mixing
 - In medium ρ spectral function w/ ρ -a₁ chiral mixing

Expected to be sensitive to details of the ρ spectral function up large m_{ee} with ALICE 3

R. Rapp private communication

Dielectron excess Early-time temperature

- Fit the m_{ee} spectrum to extract T: $dN/dm_{ee} \sim exp(-m_{ee}/T)$
- Extracted T:
 - 1.5% statistical uncertainty (4% from previous ITS 3 studies)
 - 2% sys. unc. from charm assuming fully correlated sys. as a function of $m_{\rho\rho}$ $\binom{+4\%}{-10\%}$ from previous ITS 3 studies)

Caveat: different hadronic cocktail as input in the feasibility studies

Statistics will allow more differential measurements of *T* with ALICE 3

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253 P.M Hohler and R. Rapp, Phys. Lett. B 731 (2014) 103 R. Rapp private communication

Dielectron elliptic flow

$$v_2^{\text{prompt}} = \frac{\pi}{4} \frac{1}{R_2} \frac{N^{\text{INP}} - N^{\text{OOP}}}{N^{\text{INP}} + N^{\text{OOP}}}$$

 $N^{\text{INP}}, N^{\text{OOP}}$: prompt e^+e^- yields in- and out-of-plane R_2 : resolution of the reconstructed event plane

Expected dielectron elliptic flow for all (prompt) and excess dielectrons in 30-50% Pb-Pb collisions

- v_2 values based on calculations by Gojko Vujanovic et al.
- Statistical uncertainty estimated for 6 years of data taking (Absolute stat. unc. independent on v_2 for $N^{\text{INP}} \approx N^{\text{OOP}}$)

Statistics will allow v_2 measurements as a function of m_{ee} and $p_{T.ee}$ with ALICE 3

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

$0.65 < m_{ee} < 0.75 \text{ GeV/}c^2$

G. Vujanovic et al. PRC 101 (2020) 044904

$$\lim_{p_T\to 0}\frac{dN}{p_Tdp_T}\propto \sigma^{\rm el}$$

- Thermal dielectron spectrum and low- $p_{\rm T}$ direct photon yield connected to electric conductivity of the medium σ^{el} at very low mass and p_T
- Wide spread of the predicted $\sigma^{\rm el}$ values: $0.001 < \sigma^{\rm el}/T < 0.1$ Very poorly constrained by the current measurements
- Latest calculations by R. Rapp: Width of the thermal dielectron spectrum at low $p_{T,ee}$ as sensitive as the peak at $m_{ee} = 0$
- Outside of ALICE 2 acceptance

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

G. D. Moore and J.-M. Robert arXiv:hep-ph/0607172

$$\lim_{p_T\to 0}\frac{dN}{p_Tdp_T}\propto \sigma^{\rm el}$$

- Thermal dielectron spectrum and low- $p_{\rm T}$ direct photon yield connected to electric conductivity of the medium $\sigma^{\rm el}$ at very low mass and $p_{\rm T}$
- Wide spread of the predicted σ^{el} values: $0.001 < \sigma^{el}/T < 0.1$ Very poorly constrained by the current measurements
- Latest calculations by R. Rapp: Width of the thermal dielectron spectrum at low $p_{T,ee}$ as sensitive as the peak at $m_{ee} = 0$
- Outside of ALICE 2 acceptance

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

R. Rapp, EMMI Workshop 13.09.2021

Compare thermal dielectron yield at low m_{ee} with cocktail of light-flavour hadron decays without single p_T cut on electrons

- Background from coherent photo-production of e^+e^- still under study

• Some room for possible measurements above m_{π^0} for $p_{T.ee} < 0.03$ GeV/c: measurements of π^0 , η mesons crucial at very low p_T

Compare thermal dielectron yield at low m_{ee} with cocktail of light-flavour hadron decays without single p_T cut on electrons

- Need to go lower in $p_{\rm T,e}$ than ALICE 2

Probing nuclear matter under extreme condition in heavy-ion collisions with dileptons

• Some room for possible measurements above m_{π^0} for $p_{T.ee} < 0.03$ GeV/c: measurements of π^0 , η mesons crucial at very low p_T

Ultra-soft photons in pp collisions

• At very low $p_{\rm T}$, γ produced mainly via inner bremsstrahlung = bremsstrahlung of initial and final hadronic states

$$p_1+p_2 \rightarrow p_3+p_4+k$$
.

Cross-section computable without model- and process-dependence (Low-theorem) knowing the momenta of all incoming and outgoing charged particles (charge conservation) \rightarrow Related to infrared structure of quantum field theory

Francis E. Low., Phys.Rev.Lett. 110 (1958) 468

• Several measurements of soft photon production performed previously (BNL, AGS, CERN SPS, LEP) observed excess (factor \approx 5) in association with hadrons compared to inner bremsstrahlung expectations \rightarrow Soft-photon puzzle

For an overview: see K. Reygers ALICE 3 Workshop 19.10.2021

ALICE 3 soft-photon strategy

Reactions/Systems where to look:

- Clean exclusive process like $pp \rightarrow pp\pi^+\pi^-\gamma$
 - Precise calculations for pp $\rightarrow pp\pi^+\pi^-\gamma$ exist
- Inelastic (non-diffractive) pp collisions
- Reactions/systems with higher charged particle multiplicities

 \rightarrow Take advantage of the large rapidity coverage of ALICE 3:

- To select exclusive process
- To measure charged particle multiplicity in more complicated reactions/systems

• Rapidity where to measure:

- Need to measure γ with $p_T \leq 5$ MeV due to decay γ background n
- Low E photon measurement possible down to $E \approx 50-100$ MeV via conversion Gain a factor 10, 27 and 74 in p_T going to $\eta = 3, 4, 5$ $(E/p_T = cosh(\eta))$

 \rightarrow Forward Conversion Tracker covering $3 \le \eta \le 5$

- In proton-proton: hadronisation via string fragmentation
- In QGP: coalescence/thermal production contributions
- Multi-charm baryons:
 - Charm quark produced in initial hard scattering
 - Multi-charm baryons: produced mostly via coalescence
 - \rightarrow Large enhancement in AA (large $\sigma_{c\bar{c}}$)

 \rightarrow Sensitive to the equilibrium properties of charm in the QGP **ALICE:** charmed baryons, ALICE 3: multi-charm baryons

- In proton-proton: hadronisation via string fragmentation
- In QGP: coalescence/thermal production contributions
- Multi-charm baryons:
 - Charm quark produced in initial hard scattering
 - Multi-charm baryons: produced mostly via coalescence
 - \rightarrow Large enhancement in AA (large $\sigma_{c\bar{c}}$)
 - \rightarrow Sensitive to the equilibrium properties of charm in the QGP

ALICE: charmed baryons, ALICE 3: multi-charm baryons

SHM predictions u,d,s only particles in black and (multi-)charm states in red

- In proton-proton: hadronisation via string fragmentation
- In QGP: coalescence/thermal production contributions
- Multi-charm baryons:
 - Sensitive to the equilibrium properties of charm in the QGP
 - ALICE: charmed baryons, ALICE 3: multi-charm baryons
- Quarkonium measurements beyond S-wave States:
 - Measurements currently limited to S-wave states: J/Ψ , $\Psi(2S)$, $\Upsilon(nS)$
 - χ_c, χ_b states with ALICE 3 down to $p_T = 0$

Charmonium states

- In proton-proton: hadronisation via string fragmentation
- In QGP: coalescence/thermal production contributions
- Multi-charm baryons:
 - Sensitive to the equilibrium properties of charm in the QGP
 - ALICE: charmed baryons, ALICE 3: multi-charm baryons
- Quarkonium measurements beyond S-wave States:
 - Measurements currently limited to S-wave states: J/Ψ , $\Psi(2S)$, $\Upsilon(nS)$
 - χ_c, χ_b states with ALICE 3 down to $p_T = 0$
- Heavy-flavour exotica:
 - X(3872) discovered in 2003: nature not clear **Measurement down to low-***p***^T with ALICE 3**
 - Many other states expected but not yet discovered

Possible nature of X(3872) state

Heavy-flavour probes of the QGP

Parton-medium interactions via heavy-flavour correlations

- $\Delta\eta, \Delta\varphi$ correlation of heavy-quark pairs:
 - radiative energy loss (small broadening)
 - collisional energy loss (larger broadening)
 - "thermalization" (randomization)

ALICE 3: $D\overline{D}$ correlation over wide rapidity range

• Energy loss and approach to thermalization:

- Photon-HF jet correlation: ALICE 3: down to low p_T over wide rapidity range
- Heavy-flavour baryon flow (including beauty): ALICE 3: Λ_c , $\Lambda_b v_2$ down to low p_T
- Heavy-flavour jet substructure....

 $D^0 D^0$ correlation

Non-QGP physics

• Ultra-soft photons:

- At very low p_{T} , γ produced via inner bremsstrahlung \rightarrow Cross section computable without model- and process-dependence (Low-theorem)
- Very low p_T means: γ wavelength exceeds dimension of any hadronic or nuclear system \rightarrow Easier to reach in small systems (pp collisions)
- Previous measurements: excess of soft photon in association with hadrons **ALICE 3: test Low-theorem in pp collisions**

• Others:

- Nuclei: search for super-nuclei (light-nuclei with c)....
- Interaction potentials between charmed baryons and nucleons via femtoscopic correlation
- Beyond Standard Model studies (axion-like particles...)

WA102 at CERN SPS: Photon production

Luminosity projections

- Ongoing discussions with machine groups to establish projections for 2030s
- Current assumptions for physics projections:

	levelling limited by machine							
	pp	0-0	Ar-Ar	Ca-Ca	Kr-Kr	In-In	Xe-Xe	Pb-Pb
⟨L _{AA} ⟩ (cm ⁻² s ⁻¹)	3.0·10 ³²	9.5·10 ²⁹	2.0·10 ²⁹	1.9·10 ²⁹	5.0·10 ²⁸	2.3·10 ²⁸	1.6·10 ²⁸	3.3 · 10 ²⁷
⟨L _{NN} ⟩ (cm-² s-1)	3.0·10 ³²	2.4·1032	3.3 · 1032	3.0 · 1032	3.0·10 ³²	3.0 · 1032	2.6 · 1032	1.4 · 1032
Гла (nb-1 / month)	5.1·10 ⁵	1.6 · 10³	3.4·10 ²	3.1·10 ²	8.4·10 ¹	3.9·10 ¹	2.6·10 ¹	5.6·10 ⁰
£nn (pb-1 / month)	505	409	550	500	510	512	434	242

• Total luminosity increase 2-10 x wrt to Run 3 + 4, depending on collision system (Larger increase for lighter collision system) Run 3 + 4: 13 nb⁻¹ Pb-Pb, 200 pb⁻¹ pp

