Approaching the Continuum Limit of the Deconfinement Critical Point for $N_{\rm f}$ =2 Staggered Fermions

Reinhold Kaiser

in collaboration with Owe Philipsen and Alessandro Sciarra

Institute for Theoretical Physics - University of Frankfurt

26/05/2022 - 16:40 FAIRness 2022 (Paralia Katerinis, Greece)

Outline

1 The QCD Phase Diagram and the Columbia Plot

2 Parameters of Thermal LQCD

3 A Strategy to Analyze Phase Transitions on the Lattice

4 Results for the Z_2 Critical Point

5 Conclusion and Outlook

- transition line separates hadronic phase from quark gluon plasma
- sign problem prevents lattice QCD from simulating at real $\mu \neq 0$
- thermal transition at $\mu = 0$ is analytic crossover¹ \rightarrow Columbia plot

¹Aoki et al. 2006

- transition line separates hadronic phase from quark gluon plasma
- sign problem prevents lattice QCD from simulating at real $\mu \neq 0$
- thermal transition at $\mu = 0$ is analytic crossover¹ \rightarrow Columbia plot

¹Aoki et al. 2006

- type of thermal transition as function of $m_{u,d}, m_s$
- pure gauge theory: deconfinement due to the spontaneous breaking of the Z₃ center symmetry
- dynamical quarks break center symmetry explicitly

- type of thermal transition as function of $m_{u,d}, m_s$
- pure gauge theory: deconfinement due to the spontaneous breaking of the Z₃ center symmetry
- dynamical quarks break center symmetry explicitly

Goal

Localize the Z_2 critical point for $N_{\rm f}=2$ with lattice QCD approaching the continuum limit.

Why Study Thermodynamics of Unphysical Heavy Quarks?

- (it is computationally cheaper than physical quarks)
- knowledge of phase boundaries in the whole parameter space is valuable (scaling regions)
- first principles benchmarks for effective theories without sign problem (lattice or continuum theories)
- study the interplay between dynamical screening and Debye screening
 - dynamical screening: driven by quark mass value (string breaking)
 - Debye screening: occurs in medium with deconfined color charges

Parameters of Thermal LQCD

Euclidean 4D space-time lattice

$$\Lambda = \{ n = (n_1, n_2, n_3, n_4) \mid \\ n_{1,2,3} \in [0, N_{\sigma} - 1]; n_4 \in [0, N_{\tau} - 1] \}$$

- \blacksquare fermion fields $\psi(n)$ on the the lattice sites
- gauge fields $U_{\mu}(n)$ on the links connecting the sites
- discretized action (Wilson gauge action & staggered fermion action)
- apply Monte Carlo importance sampling: gauge configurations {U} sampled
 ∞ det(Dst[U])^{1/2} exp(-S^W_a[U])

Parameters of Thermal LQCD

Euclidean 4D space-time lattice

$$\begin{split} \Lambda &= \{ n = (n_1, n_2, n_3, n_4) \mid \\ & n_{1,2,3} \in [0, N_\sigma - 1]; n_4 \in [0, N_\tau - 1] \} \end{split}$$

- fermion fields $\psi(n)$ on the the lattice sites
- agauge fields $U_{\mu}(n)$ on the links connecting the sites
- discretized action (Wilson gauge action & staggered fermion action)
- apply Monte Carlo importance sampling: gauge configurations {U} sampled

$$\propto \det(D^{\mathsf{st}}[U])^{1/2} \exp\left(-S_g^W[U]\right)$$

Observable: Polyakov Loop $L = \frac{1}{N_{\sigma}^3} \sum_{\boldsymbol{n}} \frac{1}{3} \operatorname{Tr} \left[\prod_{n_4=0}^{N_{\tau}-1} U_4(\boldsymbol{n}, n_4) \right]$

Parameters to Tune

- inverse gauge coupling $\beta(a)$
- bare quark mass am
- N_{σ} : \rightarrow spatial system size

•
$$N_{\tau}$$
: $(T = 1/(aN_{\tau}))$

A Strategy to Analyze Phase Transitions on the Lattice

- distribution of order parameter |L| is continuous for finite systems
- analyze skewness B_3 and kurtosis B_4 of |L|
- $B_3(\beta_c) = 0$ determines β_c
- $B_4(\beta_c) \rightarrow$ information on type of transition

infinite volume kurtosis values

Туре	1. Order	Z_2 (Ising 3D)	Crossover
$B_4(T_c)$	1	$1.604(1)^1$	3

¹Blote, Luijten, and Heringa 1995 ²Ferrenberg and Swendsen 1989

A Strategy to Analyze Phase Transitions on the Lattice

- distribution of order parameter |L| is continuous for finite systems
- analyze skewness B_3 and kurtosis B_4 of |L|
- $B_3(\beta_c) = 0$ determines β_c
- $B_4(\beta_c) \rightarrow$ information on type of transition

analyze quantities using
jackknife resampling \rightarrow
determine errors

 reweight with respect to β using multiple histogram method²

infinite	volun	ne k	urtosi	s val	ues
1 ()rdor	7.	(laing	<u>2D)</u>	Croc

Type 1. Order		Z_2 (Ising 3D)	Crossover	
$B_4(T_c)$	1	$1.604(1)^1$	3	

¹Blote, Luijten, and Heringa 1995 ²Ferrenberg and Swendsen 1989

Exemplary Analysis of $B_{3,4}$ for am=0.55, $N_{\tau}=8$, $N_{\sigma}=56$

Kurtosis Finite Size Scaling Formula

finite size scaling (FSS) formula for kurtosis of observable³ $O = c_M \cdot M$

$$B_4(N_{\sigma}, \beta_c, m) = A + B \cdot x + \mathcal{O}(x^2)$$

scaling variable
$$x = \left(\frac{1}{m} - \frac{1}{m_c}\right) N_\sigma^{1/\nu}$$

critical exponents from Ising 3D universality class⁴

$$\begin{array}{c|c} y_t = 1/\nu & y_t \\ \hline 1.5870(10) & 2.4818(3) \end{array}$$

³Takeda et al. 2017 ⁴Pelissetto and Vicari 2002

Kurtosis Finite Size Scaling Formula

■ finite size scaling (FSS) formula for kurtosis of observable³ $O = c_M \cdot M + c_E \cdot E$

$$B_4(N_{\sigma}, \beta_c, m) = \left(A + B \cdot x + \mathcal{O}(x^2)\right) \\ \times \left(1 + CN_{\sigma}^{y_t - y_h} + \mathcal{O}\left(N_{\sigma}^{2(y_t - y_h)}\right)\right)$$

- correction term becomes irrelevant for sufficiently large volumes
- fit kurtosis data to FSS formula to determine m_c

scaling variable
$$x = \left(\frac{1}{m} - \frac{1}{m_c}\right) N_\sigma^{1/\nu}$$

critical exponents from Ising 3D universality class⁴

$y_t = 1/\nu$	y_t
1.5870(10)	2.4818(3)

³Takeda et al. 2017 ⁴Pelissetto and Vicari 2002

Model of the Course of the Kurtosis

- course of $B_4(\beta_c)$ without correction
- step function in thermodynamic limit
- smoothed in finite size systems
- correction term shifts the lines up, depeding on N_{σ}

Results for the Critical Mass for $N_{\tau} = 8$

Preliminary Results for the Critical Mass for N_{τ} =10

Results for the Critical Point

- set the scale using w₀ scale⁵ based on Wilson flow⁶
- pion mass is not resolved by the lattice
- comparison with Wilson fermions⁷

	am	β_c	am_{π}	$a \{ fm \}$	$m_{\pi} \{ \text{GeV} \}$	$T_c \{MeV\}$	m_{π}/T_c
$N_{\tau} = 8:$	0.55	5.9821	1.72039(7)	0.0888(10)	3.82(4)	278(3)	13.7
	0.75	6.0129	1.98121(7)	0.0872(9)	4.48(5)	283(3)	15.8

1. 10	am	β_c	am_{π}	$a {\rm fm}$	$m_{\pi} \{ \text{GeV} \}$	$T_c \{MeV\}$	m_{π}/T_c
$N_{\tau} = 10:$	0.35	6.0828	1.38124(11)	0.0691(7)	3.95(4)	285(3)	13.8
	0.45	6.1139	1.55837(15)	0.0693(8)	4.44(5)	284(3)	15.6

⁵Borsányi et al. 2010

⁶Lüscher 2010

⁷Cuteri, Philipsen, Schön, et al. 2021

Conclusion and Outlook

- \blacksquare strategy to analyze LQCD transitions and to localize m_c is presented
- \blacksquare critical quark mass in lattice units has been obtained for $N_{\tau}=8$
- \blacksquare preliminary critical mass region for $N_\tau=10$ is found
- \blacksquare increasing computational effort due to larger finite size effects for larger N_{τ}
- too early to perform continuum limit

Conclusion and Outlook

- \blacksquare strategy to analyze LQCD transitions and to localize m_c is presented
- \blacksquare critical quark mass in lattice units has been obtained for $N_\tau=8$
- \blacksquare preliminary critical mass region for $N_\tau=10$ is found
- \blacksquare increasing computational effort due to larger finite size effects for larger N_{τ}
- too early to perform continuum limit
- fit results for $N_{\tau} = 10$ will improve (currently running simulations)
- \blacksquare at least one larger N_τ must be added for continuum limit

Thank you for your attention!

Bibliography I

- Aoki, Y. et al. (Oct. 2006). "The order of the quantum chromodynamics transition predicted by the standard model of particle physics". In: Nature 443.7112, pp. 675–678. ISSN: 1476-4687. DOI: 10.1038/nature05120. URL: http://dx.doi.org/10.1038/nature05120 (cit. on pp. 3, 4).
- Blote, H. W. J., E. Luijten, and J. R. Heringa (Nov. 1995). "Ising universality in three dimensions: a Monte Carlo study". In: Journal of Physics A: Mathematical and General 28.22, pp. 6289–6313. DOI: 10.1088/0305-4470/28/22/007. URL: https://doi.org/10.1088%2F0305-4470%2F28%2F22%2F007 (cit. on pp. 11, 12).
- Borsányi, Szabolcs et al. (Sept. 2010). "Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III". In: *Journal of High Energy Physics* 2010.9. ISSN: 1029-8479. DOI: 10.1007/jhep09(2010)073. URL: http://dx.doi.org/10.1007/JHEP09(2010)073 (cit. on p. 19).

Bibliography II

- Cuteri, Francesca, Owe Philipsen, Alena Schön, et al. (Jan. 2021). "Deconfinement critical point of lattice QCD with N_f = 2 Wilson fermions". In: *Phys. Rev. D* 103 (1), p. 014513. DOI: 10.1103/PhysRevD.103.014513. URL: https://link.aps.org/doi/10.1103/PhysRevD.103.014513 (cit. on p. 19).
- Cuteri, Francesca, Owe Philipsen, and Alessandro Sciarra (Nov. 2021). "On the order of the QCD chiral phase transition for different numbers of quark flavours". In: *Journal of High Energy Physics* 2021.11. DOI: 10.1007/jhep11(2021)141. URL: https://doi.org/10.1007%2Fjhep11%282021%29141 (cit. on pp. 5–7).
- Ferrenberg, Alan M. and Robert H. Swendsen (Sept. 1989). "Optimized Monte Carlo data analysis". In: *Phys. Rev. Lett.* 63 (12), pp. 1195–1198. DOI: 10.1103/PhysRevLett.63.1195. URL: https://link.aps.org/doi/10.1103/PhysRevLett.63.1195 (cit. on pp. 11, 12).

Bibliography III

- Lüscher, Martin (Aug. 2010). "Properties and uses of the Wilson flow in lattice QCD". In: Journal of High Energy Physics 2010.8. ISSN: 1029-8479. DOI: 10.1007/jhep08(2010)071. URL: http://dx.doi.org/10.1007/JHEP08(2010)071 (cit. on p. 19).
- Pelissetto, Andrea and Ettore Vicari (Oct. 2002). "Critical phenomena and renormalization-group theory". In: *Physics Reports* 368.6, pp. 549–727. ISSN: 0370-1573. DOI: 10.1016/s0370-1573(02)00219-3. URL: http://dx.doi.org/10.1016/S0370-1573(02)00219-3 (cit. on pp. 14, 15).
- Rajagopal, Krishna and Frank Wilczek (Apr. 2001). "The Condensed Matter Physics of QCD". In: At The Frontier of Particle Physics, pp. 2061–2151. DOI: 10.1142/9789812810458_0043. URL: http://dx.doi.org/10.1142/9789812810458_0043 (cit. on pp. 3–5).
- Takeda, Shinji et al. (2017). "Update on Nf=3 finite temperature QCD phase structure with Wilson-Clover fermion action". In: *PoS* LATTICE2016, p. 384. DOI: 10.22323/1.256.0384. arXiv: 1612.05371 [hep-lat] (cit. on pp. 14, 15).