Dispersive analysis of the $\gamma\gamma o Dar{D}$ data

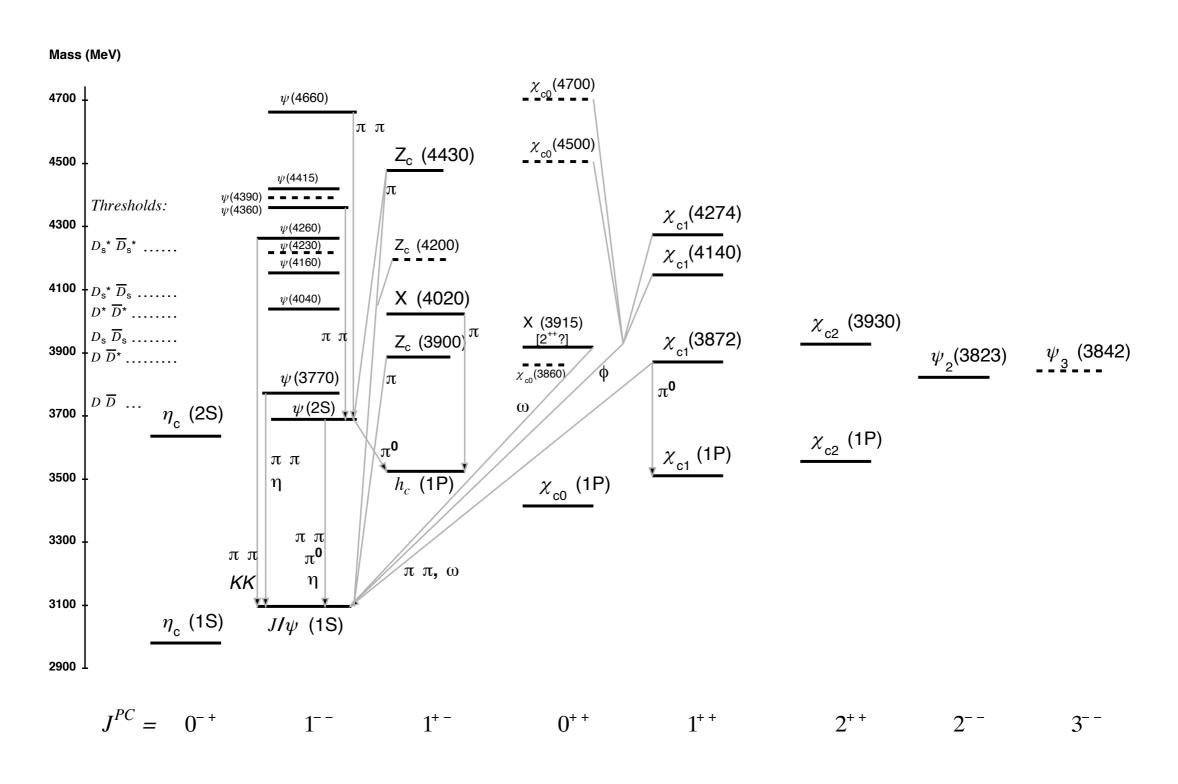
Oleksandra Deineka

In collaboration with Igor Danilkin and Marc Vanderhaeghen

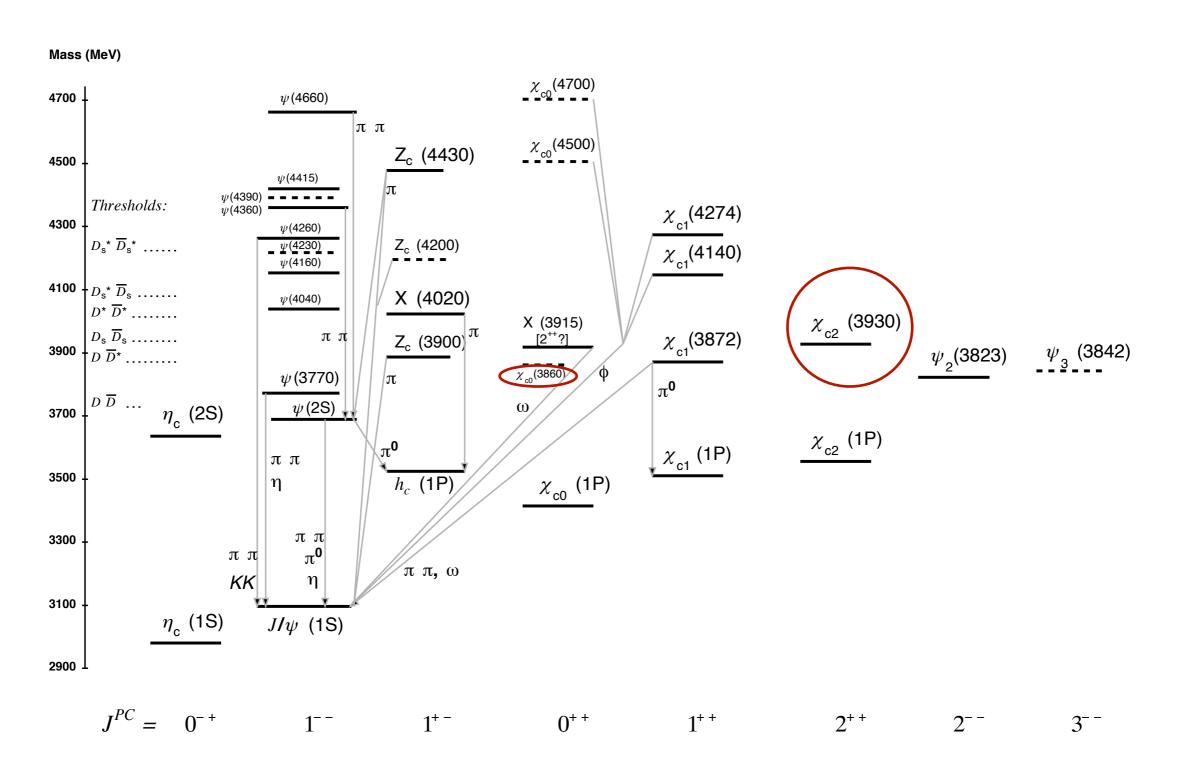
Phys. Lett. B 827, 136982 (2022)

26.05.2022

What are we looking for?

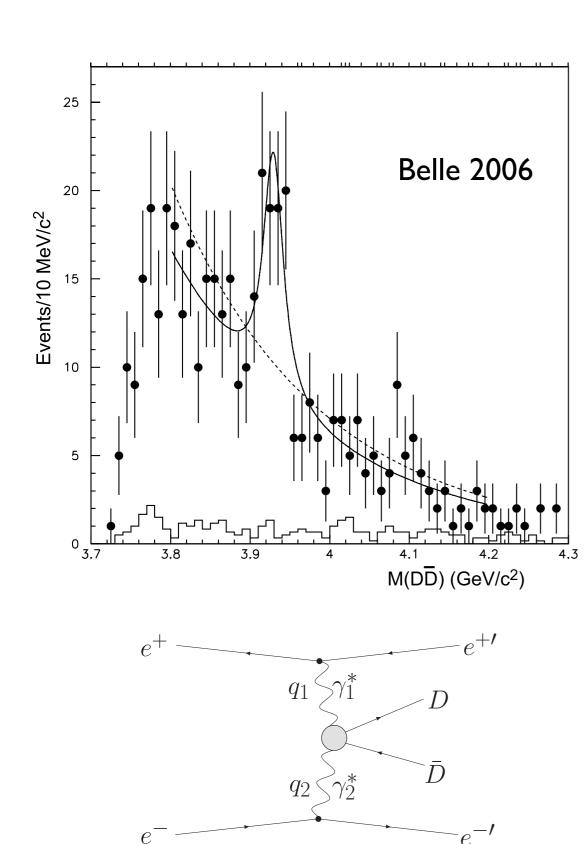


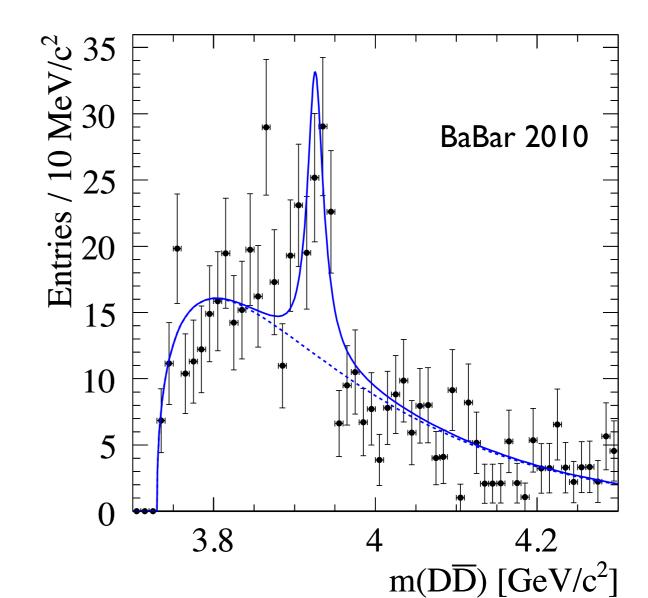
What are we looking for?



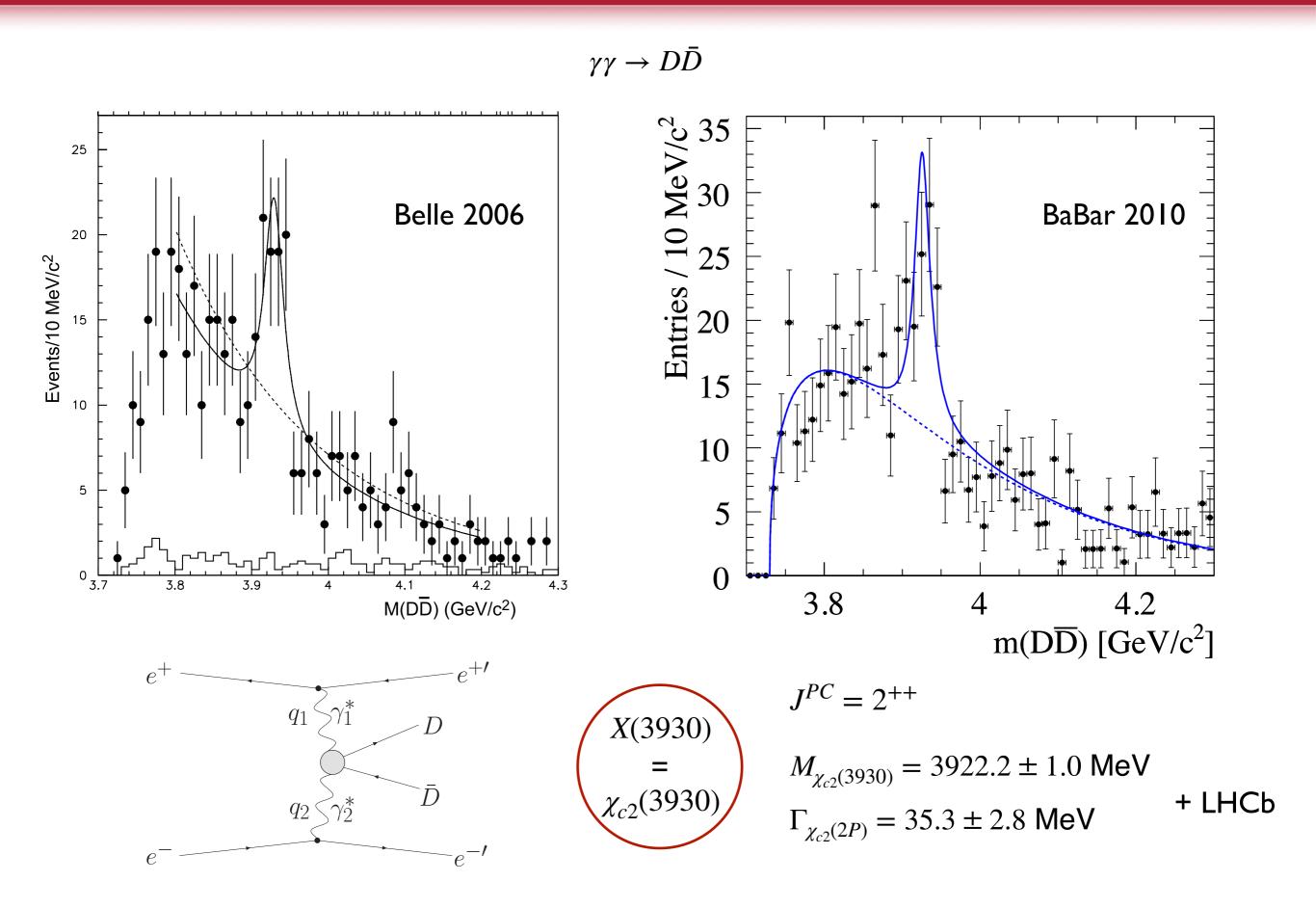
Everything is fine with $\chi_{c2}(2P)$

 $\gamma\gamma \to D\bar{D}$





Everything is fine with $\chi_{c2}(2P)$

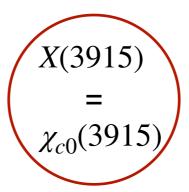


Is X(3915) a $\chi_{c0}(2P)$?

Belle 2005 $B \rightarrow J/\psi \omega K$: X(3915): later confirmed by BaBar 2008, 2010

Belle 2010 $\gamma\gamma \to X(3915) \to J/\psi\omega$ BaBar 2012 spin-parity analysis: $J^{PC}=0^{++}$

$$M_{X(3915)} = 3921.7 \pm 1.8 \text{ MeV}$$
 $\Gamma_{X(3915)} = 18.8 \pm 3.5 \text{ MeV}$ + LHCb



Is X(3915) a $\chi_{c0}(2P)$?

Belle 2005 $B \rightarrow J/\psi \omega K$: X(3915): later confirmed by BaBar 2008, 2010

Belle 2010 $\gamma\gamma \to X(3915) \to J/\psi\omega$ BaBar 2012 spin-parity analysis: $J^{PC}=0^{++}$

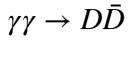
$$M_{X(3915)} = 3921.7 \pm 1.8 \text{ MeV}$$
 $\Gamma_{X(3915)} = 18.8 \pm 3.5 \text{ MeV}$ + LHCb

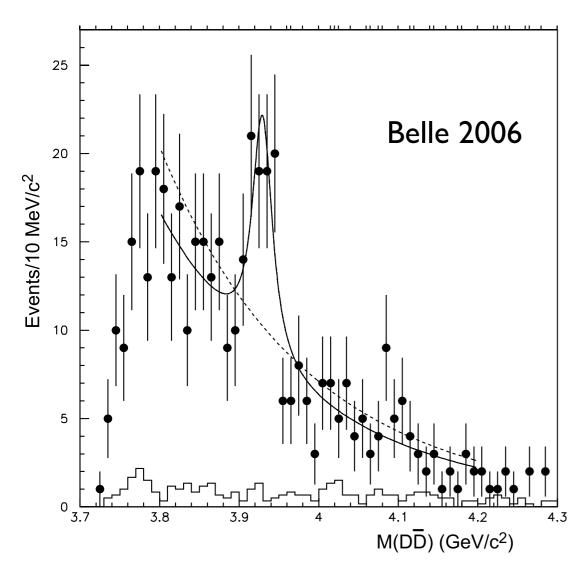
$$X(3915)$$
?
 $\chi_{c0}(3915)$

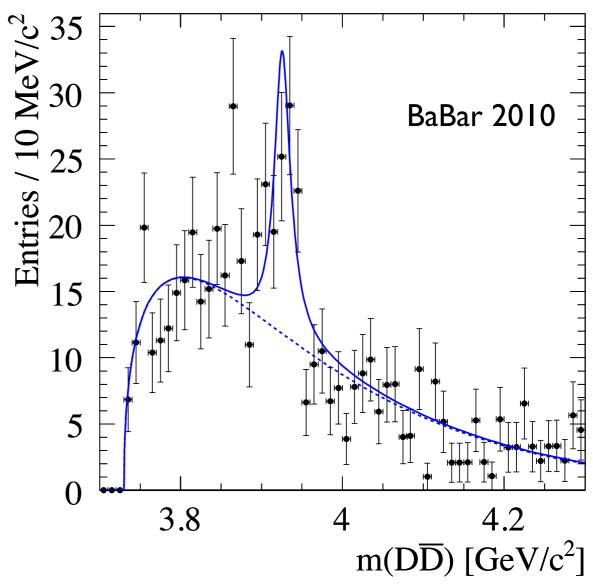
But there are some **problems**:

- No decay mode in S-wave
- The observable decay should be OZI suppressed for $\chi_{c0}(2P)$
- Narrow, width of ~20 MeV
- Small mass splitting with $\chi_{c2}(3930)$
- Might actually be the same state as $\chi_{c2}(3930)$

The dangerous Breit-Wigner

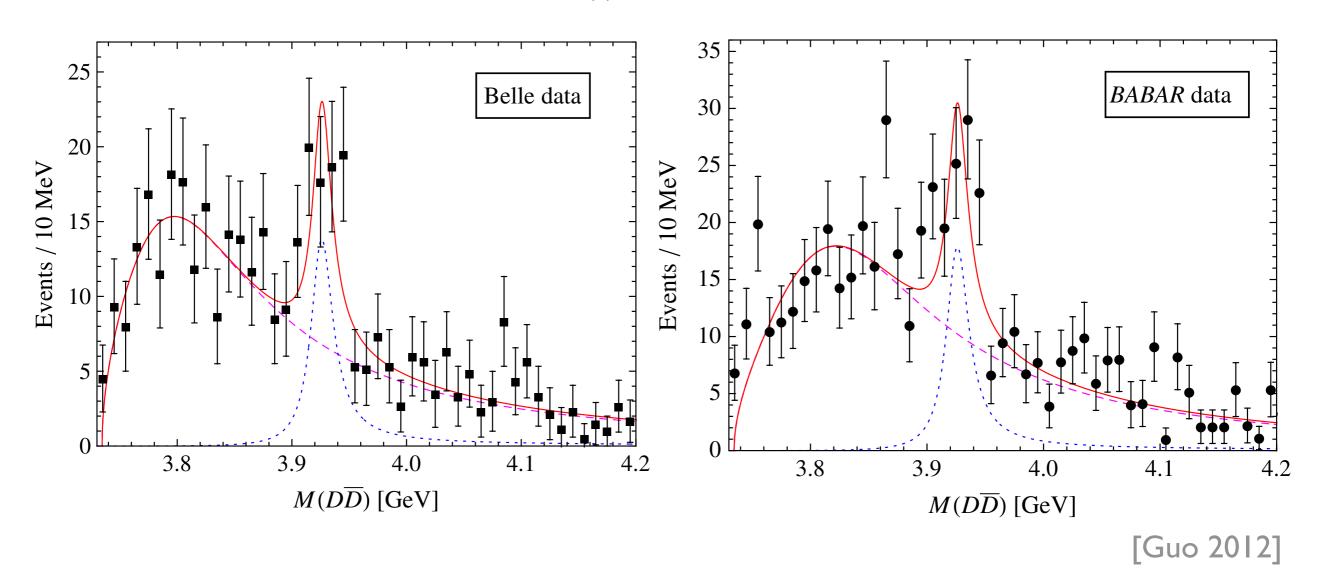






The dangerous Breit-Wigner

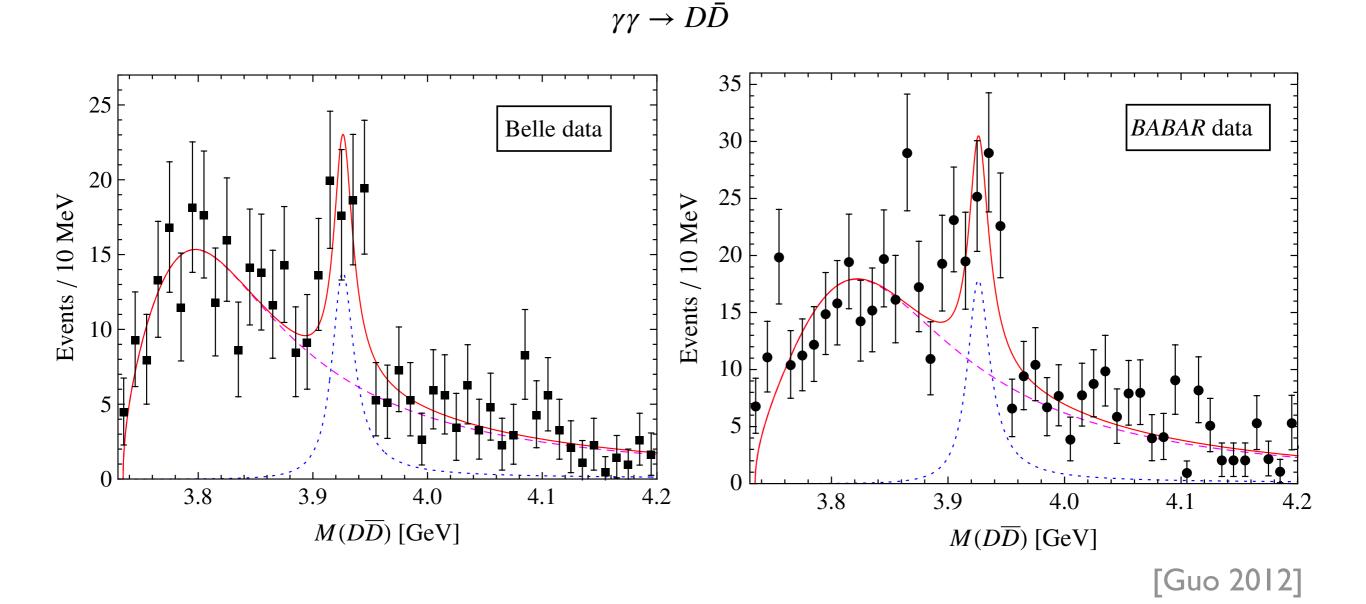
$$\gamma\gamma \to D\bar{D}$$



$$\mathsf{BW}(s) = \left(\frac{p(s)}{p(m_R^2)}\right)^{2L+1} \frac{m_R}{\sqrt{s}} \frac{B_L^2(s)}{(s - m_R^2)^2 + m_R^2 \Gamma_{\mathsf{BI}}^2(s)}, \quad \Gamma_{\mathsf{BL}}(s) = \Gamma_R \left(\frac{p(s)}{p(m_R^2)}\right)^{2L+1} \frac{m_R}{\sqrt{s}} B_L^2(s),$$

$$B_0(s) = 1$$
, $B_2(s) = \frac{F_2(p(s)r)}{F_2(p(m_R^2)r)}$, $F_2(x) = \frac{1}{9 + 3x^2 + x^4}$,

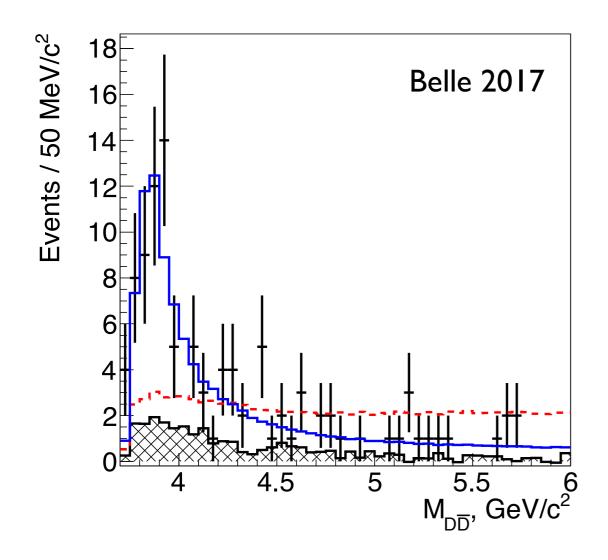
The dangerous Breit-Wigner



2 Breit-Wigner functions, mass and width of fixed to experimental value

$$M_{\chi_{c0}(2P)} = 3837.6 \pm 11.5 \mathrm{MeV} \,, \quad \Gamma_{\chi_{c0}(2P)} = 221 \pm 19 \mathrm{MeV}$$

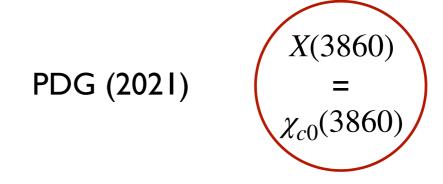
Is X(3860) a $\chi_{c0}(2P)$?



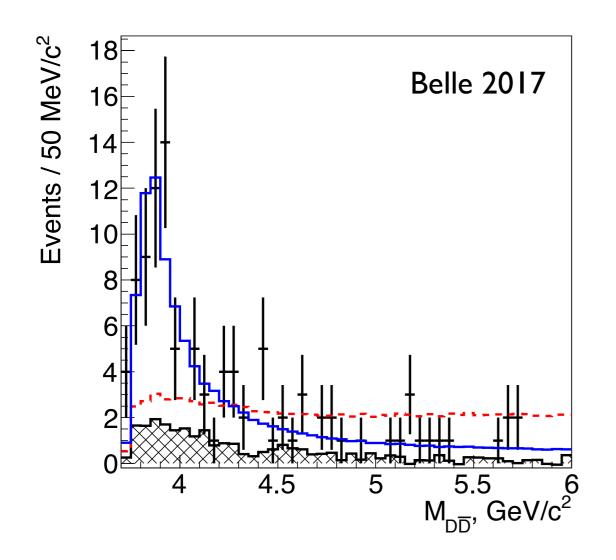
$$e^+e^- \to J/\psi D\bar{D}$$

$$M_{X(3860)} = 3862^{+26+40}_{-32-13} \text{ MeV}$$

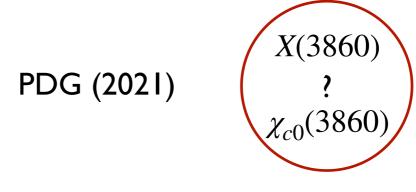
$$\Gamma_{X(3860)} = 201^{+154+88}_{-67-82} \text{ MeV}$$



Is X(3860) a $\chi_{c0}(2P)$?



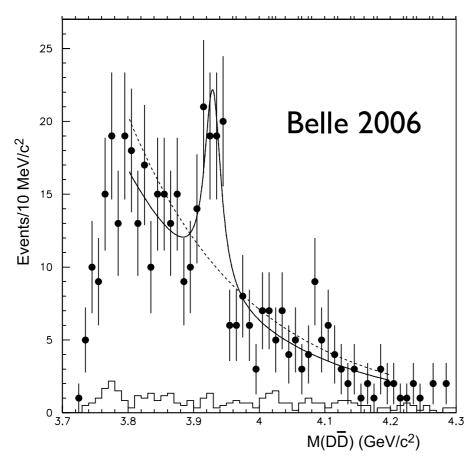
$$e^+e^- o J/\psi D\bar{D}$$
 $M_{X(3860)} = 3862^{+26+40}_{-32-13} \text{ MeV}$
 $\Gamma_{X(3860)} = 201^{+154+88}_{-67-82} \text{ MeV}$

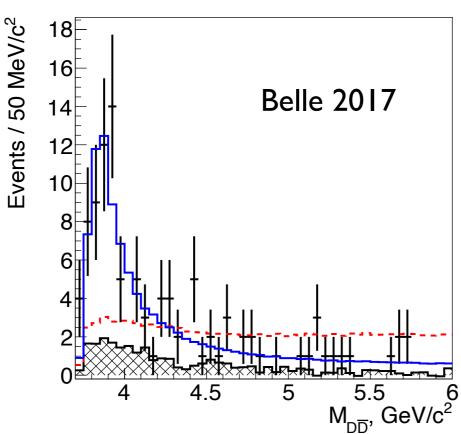


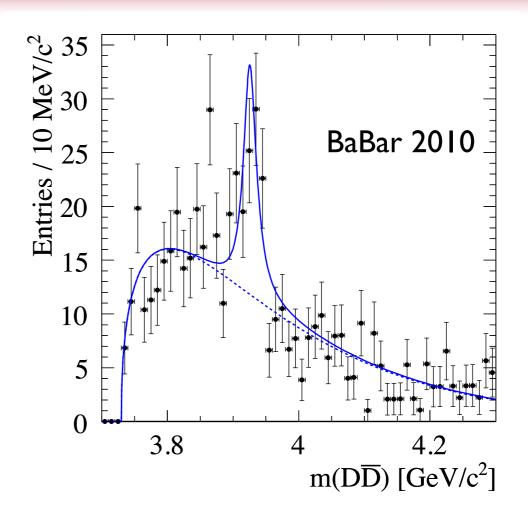
But there are some **problems**:

- The $e^+e^- \to J/\psi D\bar{D}$ statistics is rather limited;
- BW parametrisation does not respect S-matrix constraints;
- Unitary analysis $e^+e^- \to J/\psi D\bar{D}$ & $\gamma\gamma \to D\bar{D}$ [Wang 2020]: no X(3860), bound state
- LHCb pp collisions: **no** X(3860); $\chi_{c0}(3930)$ and $\chi_{c2}(3930)$ at the same position

What data do we have?





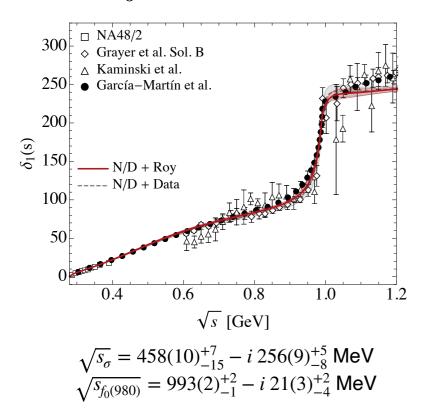


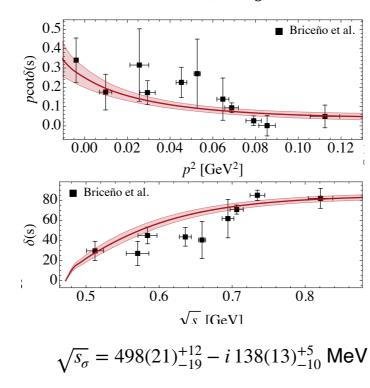
In order to figure out what is going on in the *s*-wave we need an approach, which respects **unitarity** & **analyticity** properties of the *S*-matrix

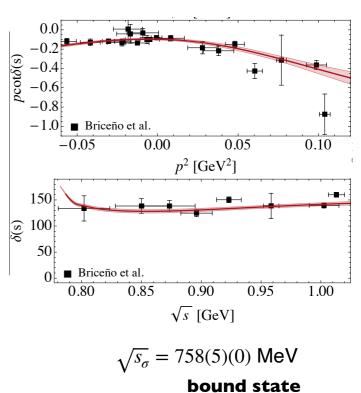
Why are we sure we can analyse it?

Partial wave dispersion relation approach:

• $\sigma/f_0(500)$ in $\pi\pi$ scattering (real & lattice data); $f_0(980)$ in $\{\pi\pi, K\bar{K}\}$



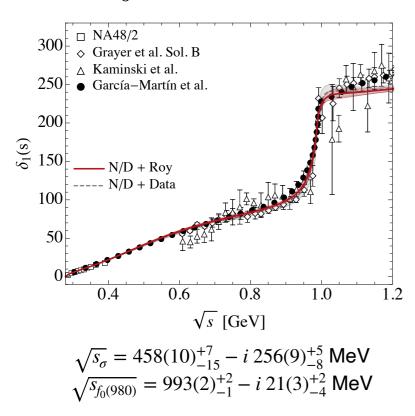


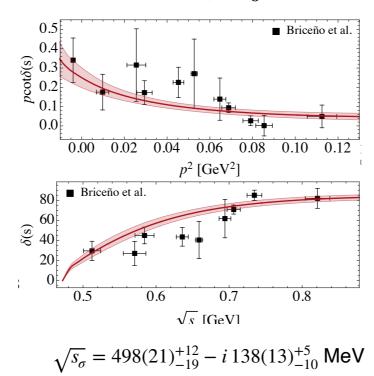


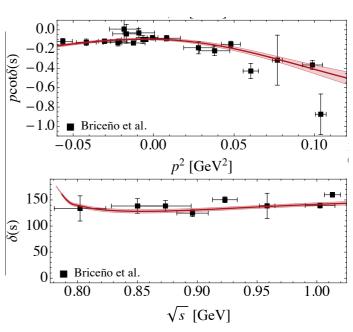
Why are we sure we can analyse it?

Partial wave dispersion relation approach:

• $\sigma/f_0(500)$ in $\pi\pi$ scattering (real & lattice data); $f_0(980)$ in $\{\pi\pi, K\bar{K}\}$

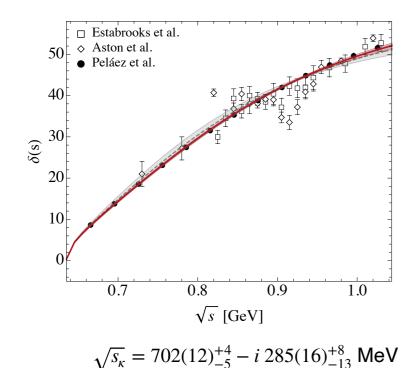


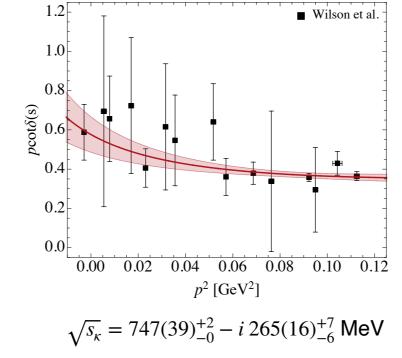




$$\sqrt{s_{\sigma}} = 758(5)(0) \text{ MeV}$$
 bound state

• $\kappa/K^*(700)$ in πK scattering (real & lattice data)

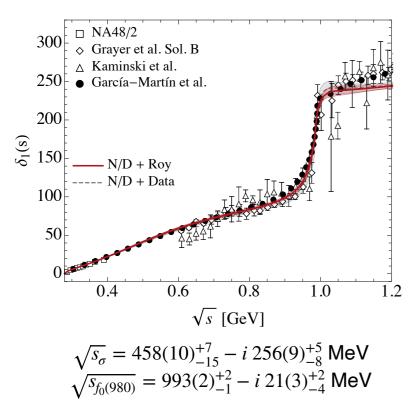


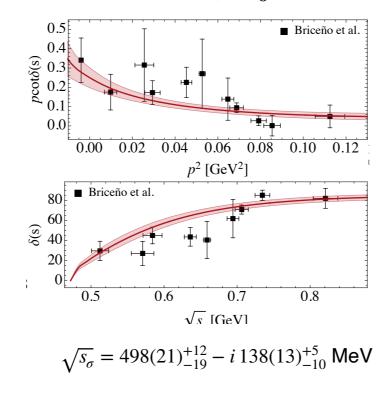


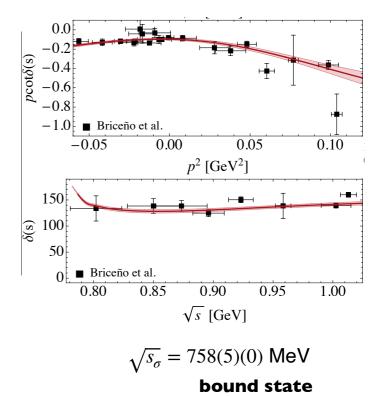
Why are we sure we can analyse it?

Partial wave dispersion relation approach:

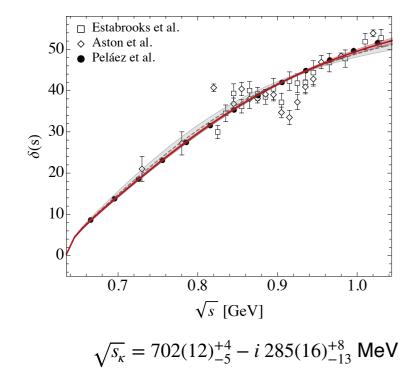
• $\sigma/f_0(500)$ in $\pi\pi$ scattering (real & lattice data); $f_0(980)$ in $\{\pi\pi, K\bar{K}\}$

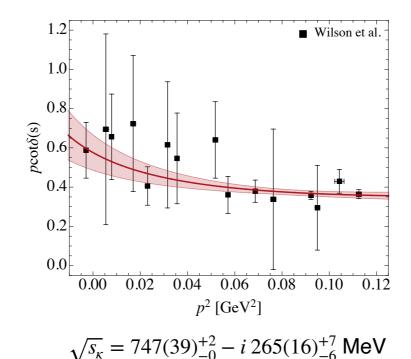






• $\kappa/K^*(700)$ in πK scattering (real & lattice data)





Can search for resonances & bound states given the data input

Partial wave dispersion relation

Unitarity relation for the partial wave amplitudes guarantees that p.w. amplitudes behave asymptotically **no worse than a constant**

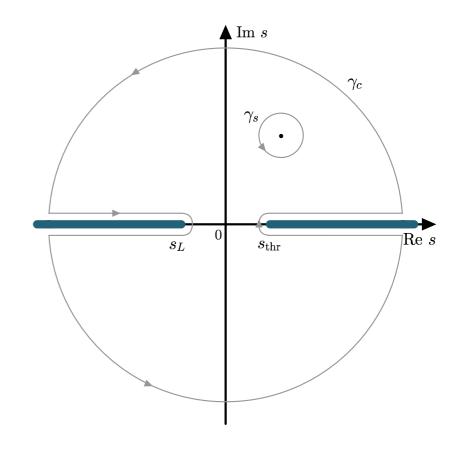
$$\operatorname{Disc} t_{ab}(s) = \sum_{c} t_{ac}(s) \rho_{c}(s) t_{cb}^{*}(s)$$

From the maximal analyticity principle one can write dispersion relation

$$t_{ab}(s) = \int_{-\infty}^{s_L} \frac{ds'}{\pi} \frac{\mathsf{Disc}\ t_{ab}(s')}{s' - s} + \int_{s_{th}}^{\infty} \frac{ds'}{\pi} \frac{\mathsf{Disc}\ t_{ab}(s')}{s' - s}$$

Which we subtract once in accordance with unitarity bound

$$t_{ab}(s) = U_{ab}(s) + \frac{s - s_M}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s' - s_M} \frac{\mathsf{Disc}\ t_{ab}(s')}{s' - s}$$



Partial wave dispersion relation

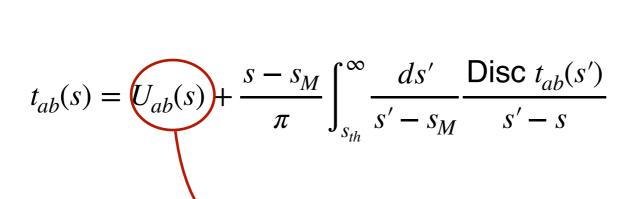
Unitarity relation for the partial wave amplitudes guarantees that p.w. amplitudes behave asymptotically **no worse than a constant**

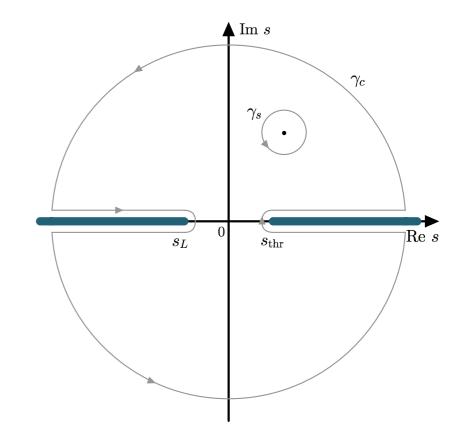
$$\operatorname{Disc} t_{ab}(s) = \sum_{c} t_{ac}(s) \rho_{c}(s) t_{cb}^{*}(s)$$

From the maximal analyticity principle one can write dispersion relation

$$t_{ab}(s) = \int_{-\infty}^{s_L} \frac{ds'}{\pi} \frac{\mathsf{Disc}\ t_{ab}(s')}{s' - s} + \int_{s_{th}}^{\infty} \frac{ds'}{\pi} \frac{\mathsf{Disc}\ t_{ab}(s')}{s' - s}$$

Which we subtract once in accordance with unitarity bound





included subtraction constant and left-hand cuts, asymptotically bounded unknown function

N/D method

Once-subtracted p.w. dispersion relation

$$t_{ab}(s) = U_{ab}(s) + \frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{\mathsf{Disc}\ t_{ab}(s')}{s' - s}$$

can be solved using N/D method with input from $U_{ab}(s)$ above threshold

$$t_{ab}(s) = \sum_{c} D_{ac}^{-1} N_{cb}(s)$$

$$N_{ab}(s) = U_{ab}(s) + \frac{s}{\pi} \sum_{c} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{N_{ac}(s')\rho_{c}(s')(U_{cb}(s') - U_{cb}(s))}{s' - s}$$

$$D_{ab}(s) = \delta_{ab} - \frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{N_{ab}(s')\rho_b(s')}{s' - s}$$

N/D method

Once-subtracted p.w. dispersion relation

$$t_{ab}(s) = U_{ab}(s) + \frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{\mathsf{Disc}\ t_{ab}(s')}{s' - s}$$

can be solved using N/D method with input from $U_{ab}(s)$ above threshold

$$t_{ab}(s) = \sum_{c} D_{ac}^{-1} N_{cb}(s)$$

$$N_{ab}(s) = U_{ab}(s) + \frac{s}{\pi} \sum_{c} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{N_{ac}(s')\rho_{c}(s')(U_{cb}(s') - U_{cb}(s))}{s' - s}$$

$$D_{ab}(s) = \delta_{ab} - \frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{N_{ab}(s')\rho_b(s')}{s' - s}$$

s-wave $\gamma\gamma\to D\bar{D}$ amplitude is the off-diagonal term of the coupled-channel $\{\gamma\gamma,D\bar{D}\}$ system with $1=\gamma\gamma,2=D\bar{D}$

$$t_{12}(s) = \underbrace{U_{12}(s)} + \underbrace{D_{22}^{-1}(s)} \left(-\frac{s}{\pi} \int_{4m_D^2}^{\infty} \frac{ds'}{s'} \frac{\mathsf{Disc}(D_{22}(s')) U_{12}(s')}{s'-s}\right)$$
 left-hand cuts

Left-hand cuts

We approximate left-hand cuts as an expansion in a **conformal mapping variable** $\xi(s)$

[Gasparyan, Lutz 2010]

$$U_{22}(s) = t_{22}(0) + \frac{s}{\pi} \int_{-\infty}^{s_L} \frac{ds'}{s'} \frac{\operatorname{Im} t_{22}(s')}{s' - s} \simeq \sum_{n=0}^{\infty} C_n \xi^n(s)$$
to be determined from the fits

The exact form of the conformal map

$$\xi(s) = \frac{\sqrt{s - s_L} - \sqrt{s_E - s_L}}{\sqrt{s - s_L} + \sqrt{s_E - s_L}}$$

$$s_L = 4(m_D^2 - m_\pi^2)$$

$$\sqrt{s_E} = \frac{1}{2} \left(\sqrt{s_{th}} + \sqrt{s_{max}} \right)$$

Left-hand cuts

We approximate left-hand cuts as an expansion in a **conformal mapping variable** $\xi(s)$

[Gasparyan, Lutz 2010]

$$U_{22}(s) = t_{22}(0) + \frac{s}{\pi} \int_{-\infty}^{s_L} \frac{ds'}{s'} \frac{\operatorname{Im} t_{22}(s')}{s' - s} \simeq \sum_{n=0}^{\infty} C_n \xi^n(s)$$
to be determined from the fits

The exact form of the conformal map

$$\xi(s) = \frac{\sqrt{s - s_L} - \sqrt{s_E - s_L}}{\sqrt{s - s_L} + \sqrt{s_E - s_L}}$$

$$s_L = 4(m_D^2 - m_\pi^2)$$

$$\sqrt{s_E} = \frac{1}{2} \left(\sqrt{s_{th}} + \sqrt{s_{max}} \right)$$

For the s-wave, I=0 photon fusion process $\gamma\gamma\to D\bar{D}$: Born (also for non-resonant I=1)

$$U_{12}(s) = -\frac{2\sqrt{2} e^2 m_D^2}{s\beta(s)} \log \frac{1+\beta(s)}{1-\beta(s)}, \quad \beta(s) \equiv \frac{2p(s)}{\sqrt{s}} = \sqrt{1-\frac{4m_D^2}{s}}$$

Naïve analysis of the combined data

s-wave: I=0 with rescattering, I=1 only Born d-wave: Breit-Wigner with fixed $\chi_{c2}(3930)$ mass and width s-wave: s-wave:

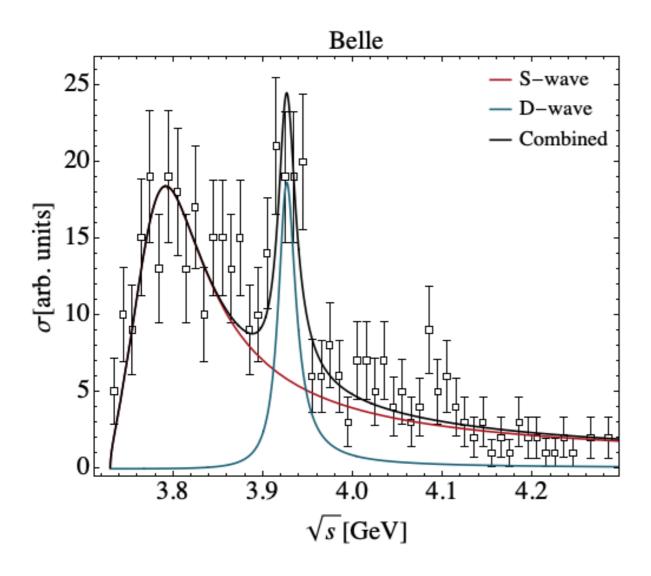
Naïve analysis of the combined data

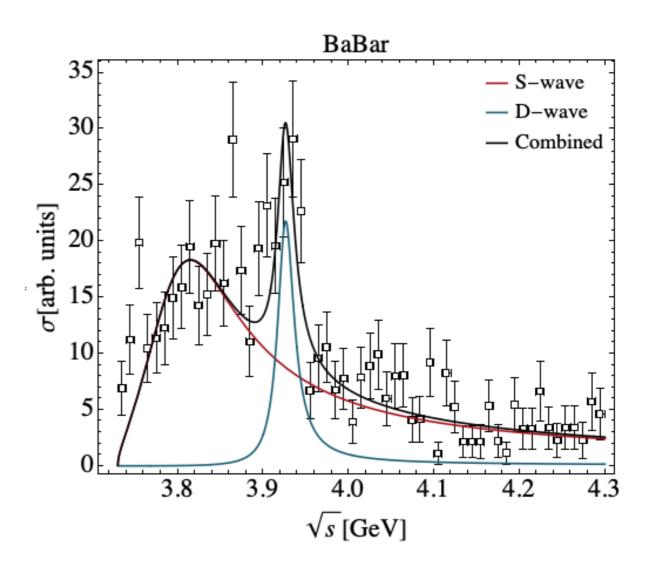
s-wave: I = 0 with rescattering, I = 1 only Born

 $\frac{1}{2} = 0 \text{ with rescattering, } 1 = 1 \text{ only both}$

d-wave: Breit-Wigner with fixed $\chi_{c2}(3930)$ mass and width

2 parameters from N/D + normalisations N_0, N_2





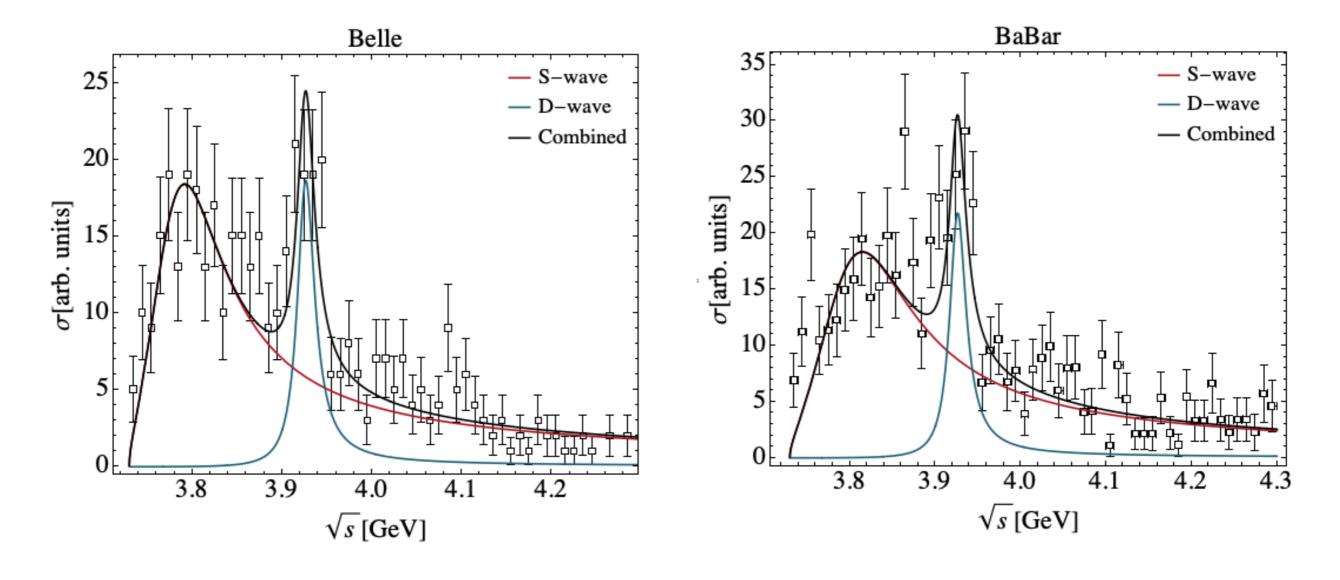
3772.2 - 50i MeV

3788.6 - 68i MeV

Naïve analysis of the combined data

s-wave: I=0 with rescattering, I=1 only Born \Rightarrow d-wave: Breit-Wigner with fixed $\chi_{c2}(3930)$ mass and width \Rightarrow + r

2 parameters from N/D + normalisations N_0, N_2

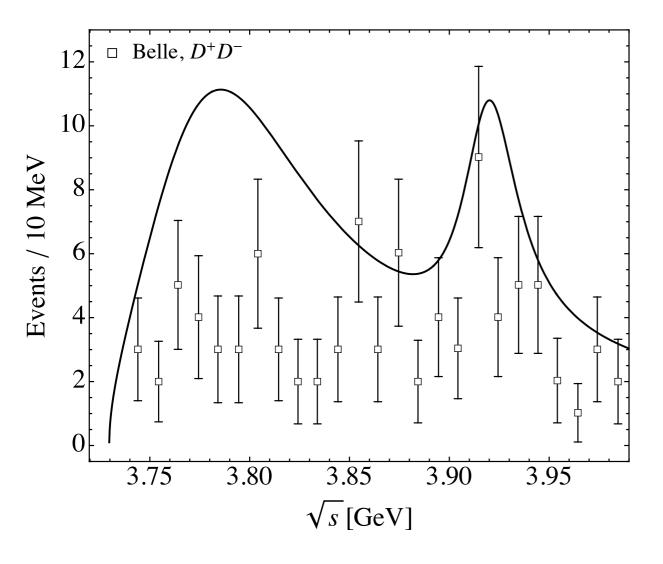


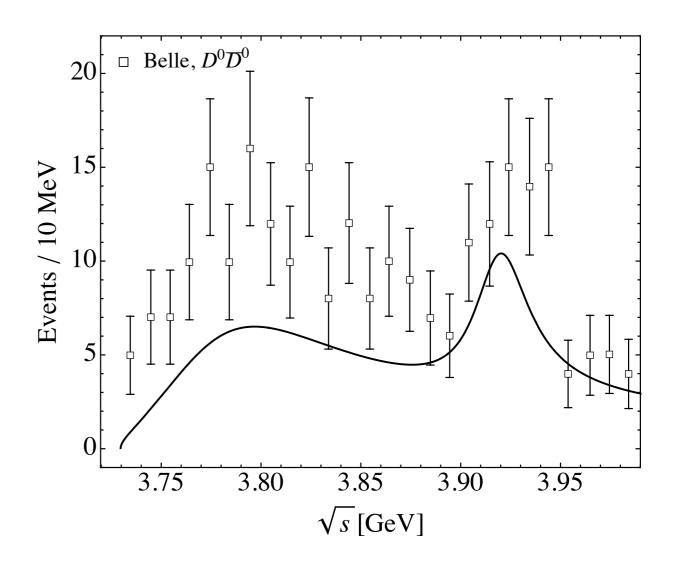
3772.2 - 50i MeV

3788.6 - 68i MeV

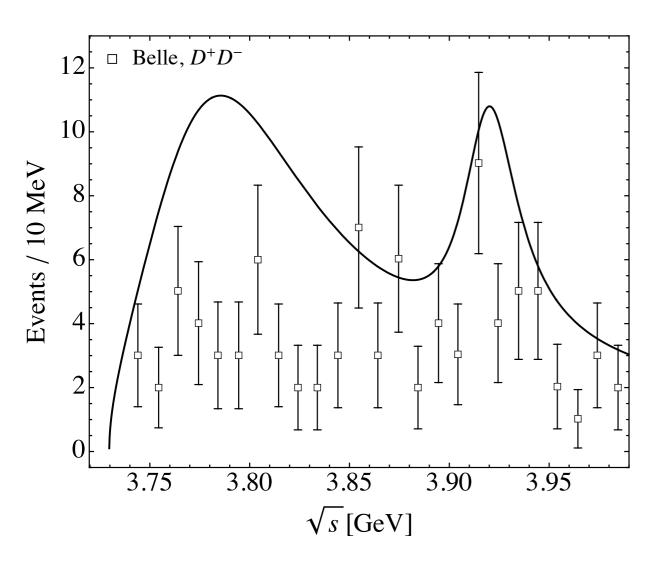
Everything is perfect, right? **Wrong**.

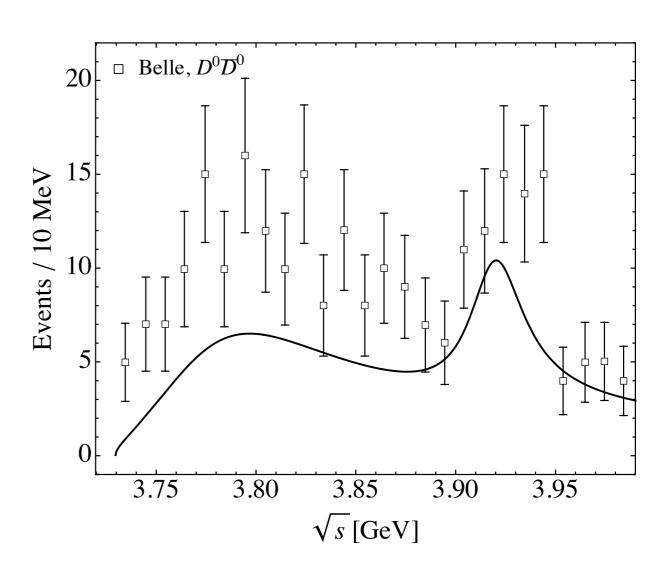
Surprise for the naïve analysis





Surprise for the naïve analysis

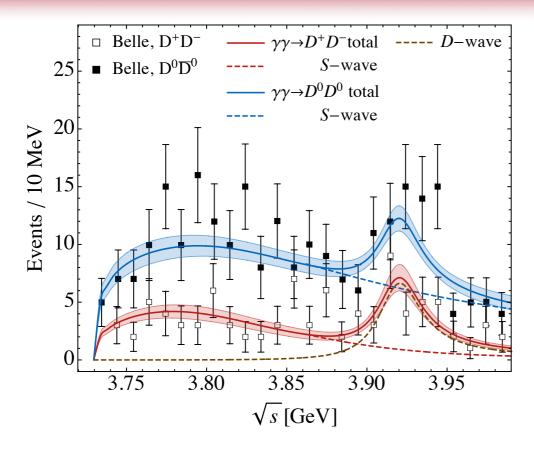




The fit to combined data **do not** describe charged and neutral channels (the same holds for BaBar data)

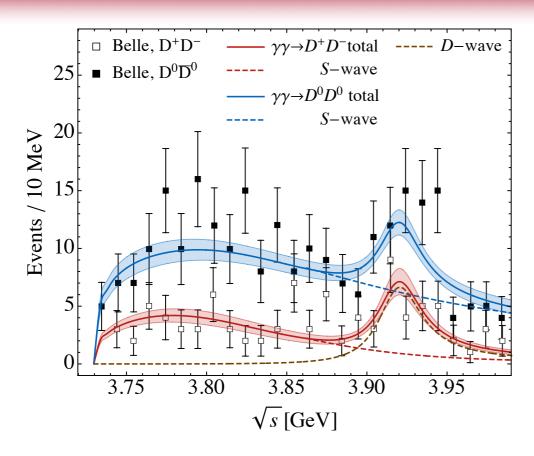
Maybe there is something wrong with the data itself? Or maybe we've already seen something similar?...

Analysis of charged and neutral data

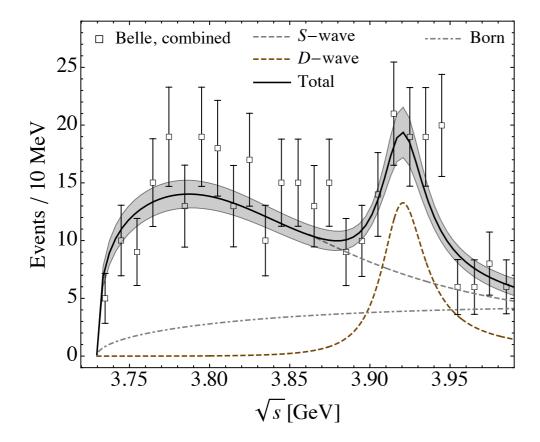


 $s_B = 3695(4) \, \text{MeV}$

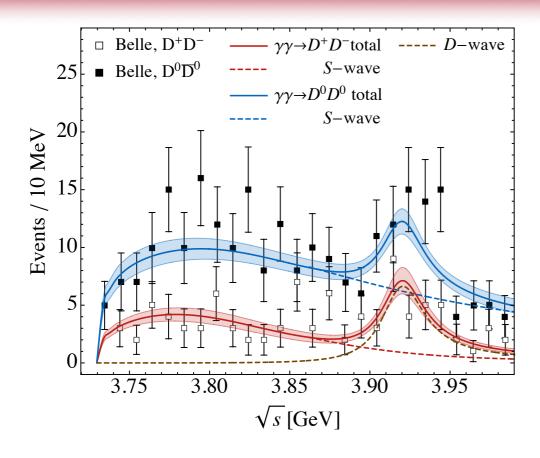
Analysis of charged and neutral data



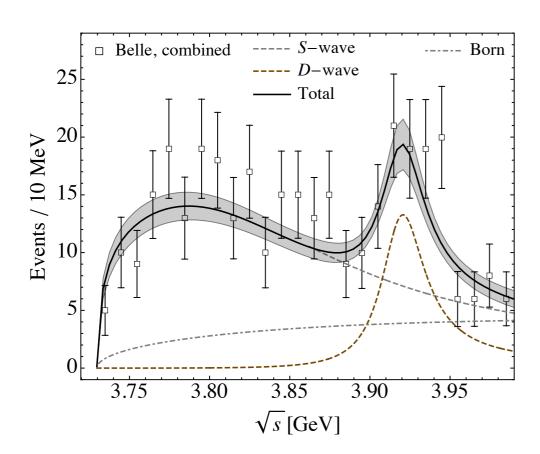
$$s_B = 3695(4) \, \text{MeV}$$

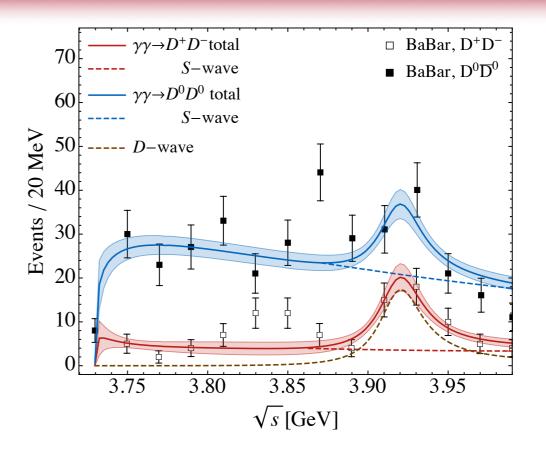


Analysis of charged and neutral data

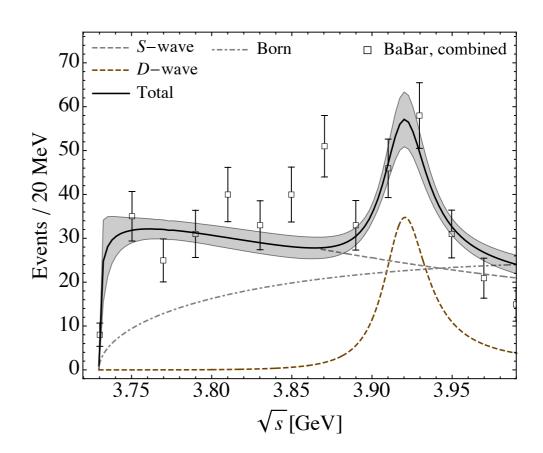


$$s_B = 3695(4) \,\text{MeV}$$

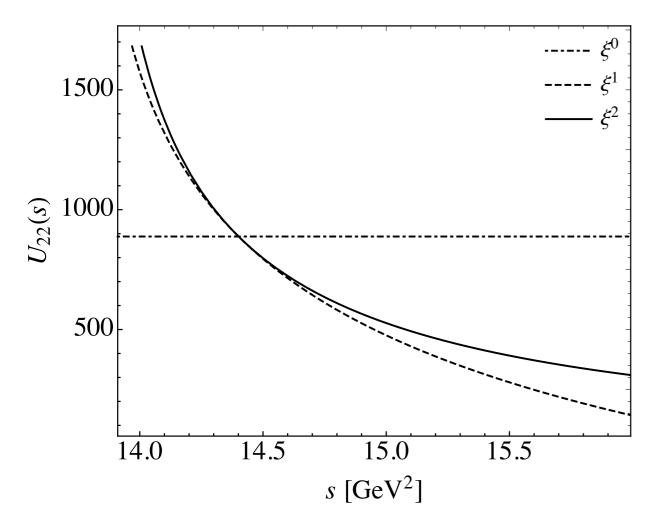




$$\sqrt{s_B} = 3669.4(18.0) \, \text{MeV}$$



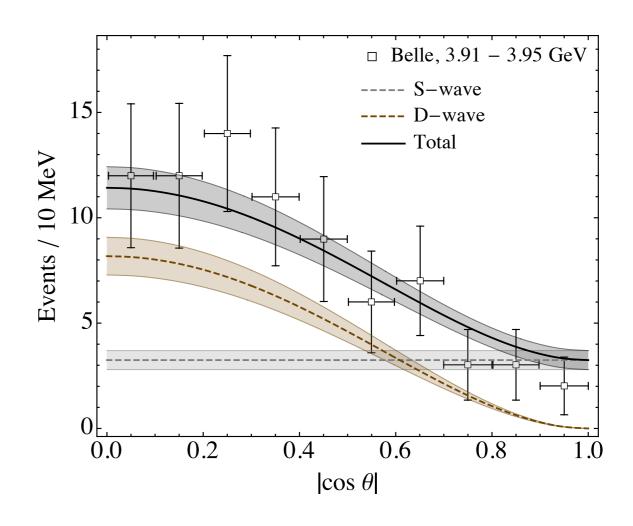
Convergence & angular distribution



Good convergence with 3 parameters in conformal mapping expansion ⇒ there is no need for more parameters

Convergence & angular distribution

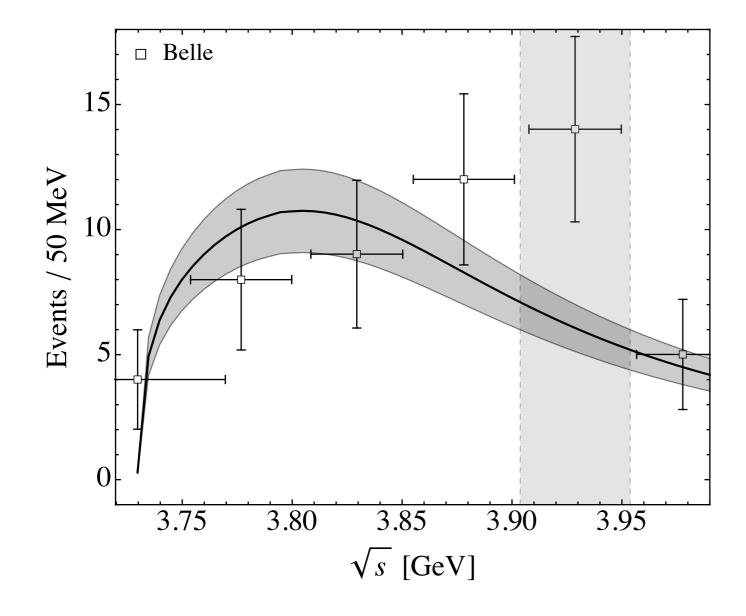




Good convergence with 3 parameters in conformal mapping expansion \Longrightarrow there is no need for more parameters

Claims regarding X(3915) presence also in $\gamma\gamma\to D\bar{D}$ data [Chen 2012] : no evidence in angular distribution

Analysis of data



$$\frac{d\sigma}{d\sqrt{s}} = N \frac{\lambda^{1/2}(s, q^2, m_{J/\psi}^2) \,\lambda^{1/2}(s, m_D^2, m_D^2)}{q^6 \sqrt{s}} \, \left| D_{22}^{-1}(s) \right|^2$$
the only fitting parameter

$$\lambda(x, y, z) \equiv x^2 + y^2 + z^2 - 2(xy + xz + yz)$$

Only 6 data points below 4 GeV Minus one point at ~ 3.93 GeV GeV where $\chi_{c2}(3930)$ resides = 5 points

No realistic estimates can be done from this data alone; full experimental dataset is needed

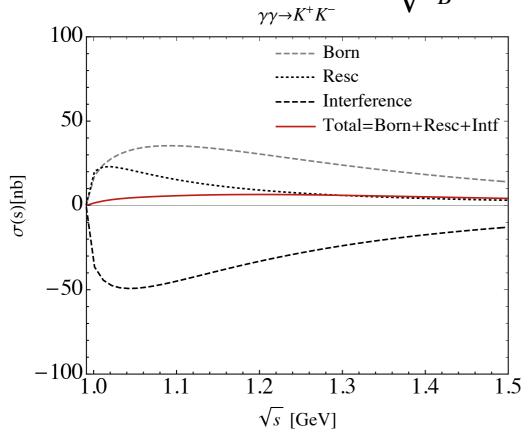
Now $\chi_{c2}(3860)$ is in PDG $^-$ (ツ)_/

Also lattice [Prelovsek 2020] but \sim 100 MeV bigger (maybe X(3915))

Our analysis of $\gamma\gamma \to D\bar{D}$ is consistent

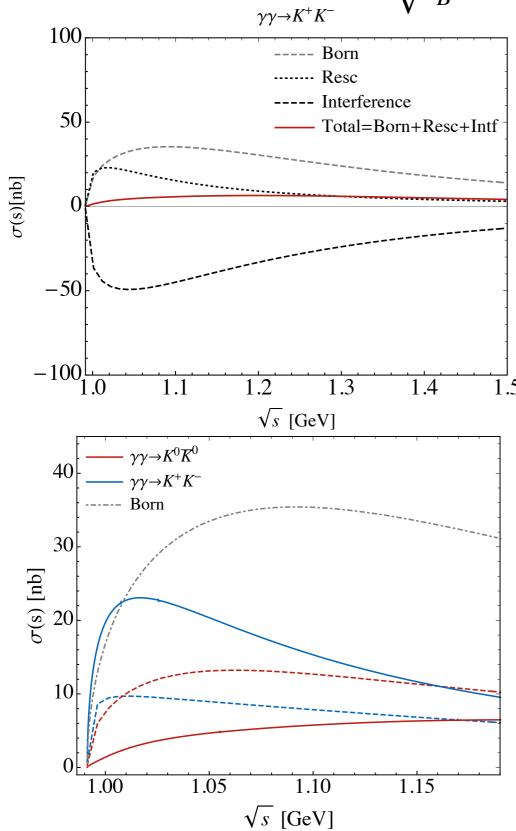
Comparison with the case

Consider again $\{\pi\pi, K\bar{K}\}$ coupled channel system and switch off $\pi\pi$ channel $\Longrightarrow f_0(980)$ becomes a $K\bar{K}$ bound state with $\sqrt{s_B}=961$ MeV



Comparison with the case

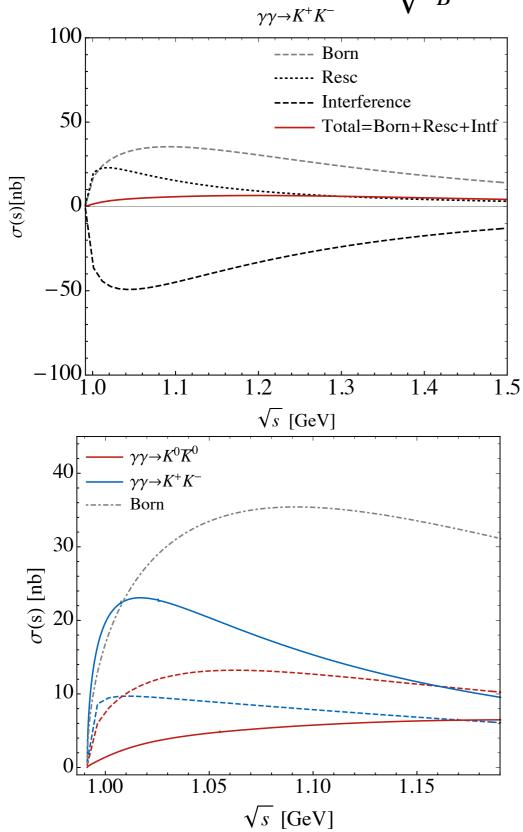
Consider again $\{\pi\pi, K\bar{K}\}$ coupled channel system and switch off $\pi\pi$ channel $\Longrightarrow f_0(980)$ becomes a $K\bar{K}$ bound state with $\sqrt{s_B}=961$ MeV

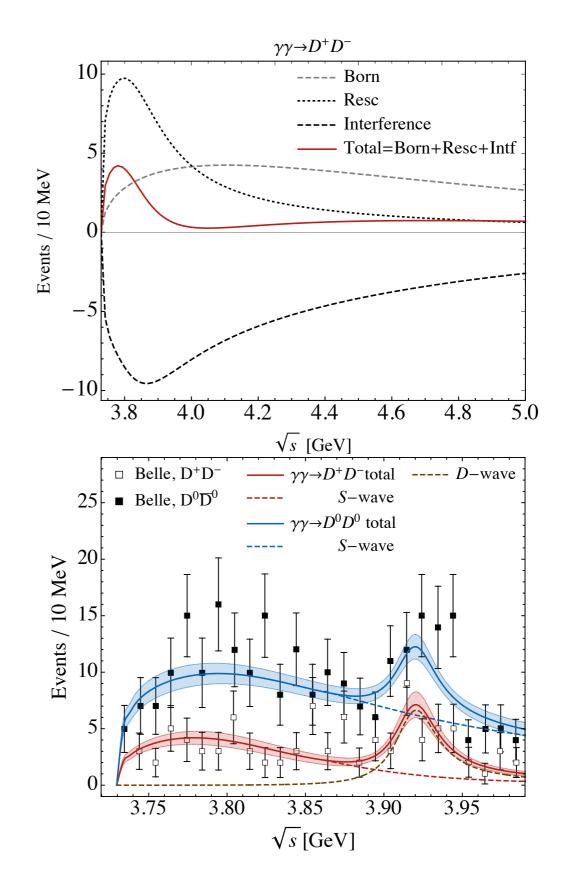


Comparison with the case

Consider again $\{\pi\pi, K\bar{K}\}$ coupled channel system and switch off $\pi\pi$ channel $\Longrightarrow f_0(980)$

becomes a $K\bar{K}$ bound state with $\sqrt{s_B} = 961 \text{ MeV}$





What's next?

- $lacksquare{D}$ Dispersive analysis of the $\gamma\gamma o D^+D^-, D^0ar{D}^0$ data
- $lacksquare{\square}$ Consistency check with the $e^+e^- o J/\psi D\bar{D}$ data
- \square No broad resonance corresponding to X(3860) found
- lacksquare Bound state below the $Dar{D}$ threshold, $\sim Dar{D}$ molecule

What's next?

- lacksquare Dispersive analysis of the $\gamma\gamma \to D^+D^-, D^0ar{D}^0$ data
- $lacksquare{\Box}$ Consistency check with the $e^+e^- o J/\psi D\bar{D}$ data
- \square No broad resonance corresponding to X(3860) found
- lacksquare Bound state below the $Dar{D}$ threshold, $\sim Dar{D}$ molecule
- □ N/D application to many other exciting processes
- \square Light: $\gamma\gamma \to \pi^0\eta$, $K\bar{K}$; $(g-2)_\mu$ HLBL contributions
- ☐ Coupled-channel analysis?
- $\Box J/\psi J/\psi$ scattering LHC?
- ☐ Bottom systems?

What's next?

- $lacksquare{D}$ Dispersive analysis of the $\gamma\gamma o D^+D^-, D^0ar{D}^0$ data
- $lacksquare{\square}$ Consistency check with the $e^+e^- o J/\psi D\bar{D}$ data
- \square No broad resonance corresponding to X(3860) found
- lacksquare Bound state below the $Dar{D}$ threshold, $\sim Dar{D}$ molecule
- □ N/D application to many other exciting processes
- \square Light: $\gamma\gamma \to \pi^0\eta$, $K\bar{K}$; $(g-2)_\mu$ HLBL contributions
- ☐ Coupled-channel analysis?
- $\Box J/\psi J/\psi$ scattering LHC?
- ☐ Bottom systems?

Thank you!