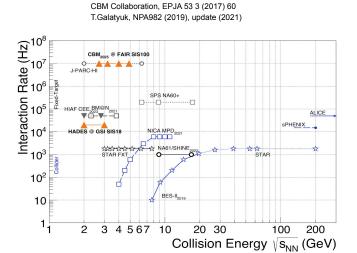
CBM performance for K_S⁰ meson measurement using Machine Learning

Olha Lavoryk (Taras Shevchenko National University of Kyiv), Andrea Dubla, Ilya Selyuzhenkov, Oleksii Lubynets, Shahid Khan, Viktor Klochkov

> FAIRNESS 25 May 2022

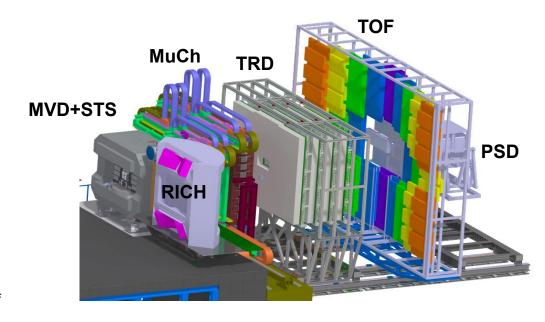
CBM physics goals and experimental challenges



CBM physics program: study QCD matter in extreme conditions (high net-baryon densities, moderate temperatures), equation of state of nuclear matter at densities similar to the densities in the core of neutron stars

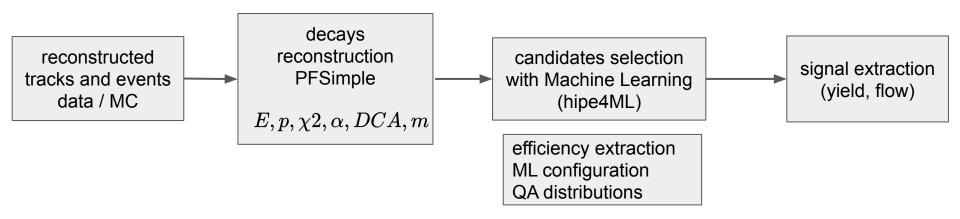
Major observables:

- Multi-strange hyperons and Hypernuclei
- Flows and fluctuations
- · Dilepton spectra

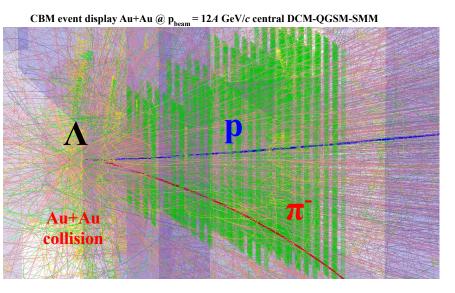


- Tracking: Micro-Vertex Detector (MVD)
 Silicon Tracking System (STS)
- Particle identification:
 Muon Chambers (MuCh)
 Ring Imaging Cherenkov (RICH) detector
 Transition Radiation Detector (TRD)
 Time of Flight (TOF) detector
- Collision geometry: Projectile Spectator Detector (PSD)

(Multi-)strange analysis workflow



(Multi-)strange reconstruction in CBM



Reliable and efficient reconstruction of (multi-)strange hadrons, hypernuclei, and other decays is crucial for CBM physics analysis:

 <u>PFSimple</u> package is designed to be flexible and modular for systematic performance studies and physics analysis

Manual optimization of the multi-dimensional parameter space of decay selection variables is inefficient and will require a lot of time:

 An automatic and efficient procedure, which can reject background and efficiently select signal is needed

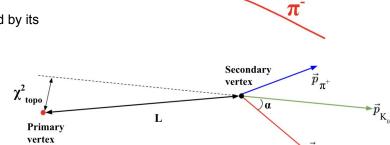
Use Machine Learning (ML) algorithms for selection optimization

K_S⁰ reconstruction

- Combine all pion tracks (MC PID is used)
- Pion pair coming from a K_S⁰ decay is termed as signal (MC=1)
- Signal sample mass range: 0.43485 0.56135 Gev (5 σ around the K_S⁰ peak)
- Pion pair not originating from a K_S⁰ decay is considered as background (MC=0)
- Background sample mass range: 0.3-1 GeV (m_{π+}+m_{π-}=0.996 GeV≈1 GeV)

Variables:

- χ^2_{prim} squared distance Δr between the daughter track and the primary vertex divided by its error
- DCA distance of closest approach between positive and negative & pion tracks
- χ^2_{geo} squared distance Δr between daughter tracks divided by its error C
- cosinepos angle between proton and K_S⁰ momenta
- cosineneg angle between pion and K_s⁰ momenta
- L/ΔL distance between primary and secondary vertex divided over its error
- χ²_{topo} squared distance Δr between V0-candidate trajectory and the primary vertex divided by its error C
- cosine topological cosine of the angle between primary vertex and point of K_s⁰ origin



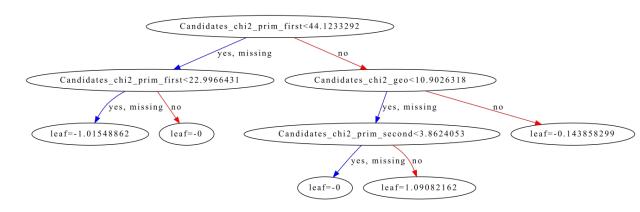
DCA

Primary

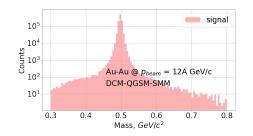
vertex

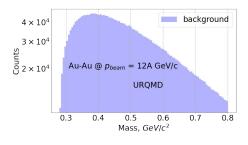
Machine learning via Boosted Decision Trees

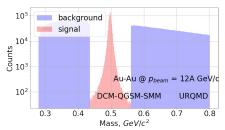
- Boosting combines weak learners (error rate <50%)
 to make a strong learner (error rate <25%)
- Decision trees (weak learners) are combined together to make a GB algorithm
- In each step a new tree is used to improve the previous prediction
- XGB is an extension of GB with:
 - better control over overfitting
 - parallel processing
 - additional features



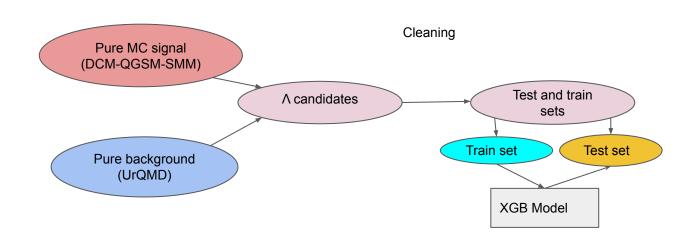
XGB implementation for K_S⁰



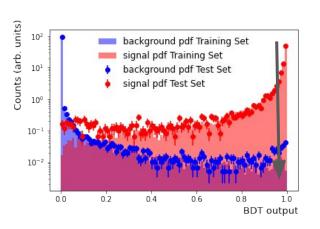


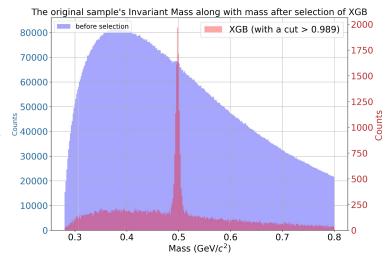


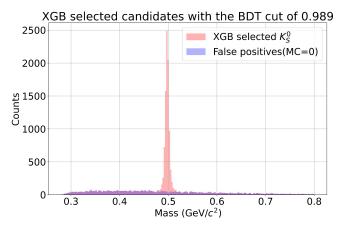
- DCM-QGSM-SMM sample as simulated data (MC signal)
- UrQMD sample is treated as experimental data (MC background)
- K⁰_s candidates are cleaned by removing nonphysical values
- K⁰_S candidates are divided into train(80%) and test(20%) samples



XGB performance for K⁰_S candidates selection







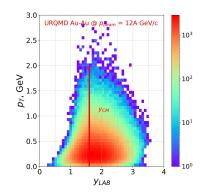
XGB trained and tested models are applied to a sample of 50k of DCM-QGSM-SMM and UrQMD events

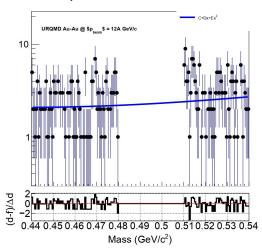
Yield Extraction: fitting procedure

Double Gaussian function is used for signal and 2nd order polynomial for background

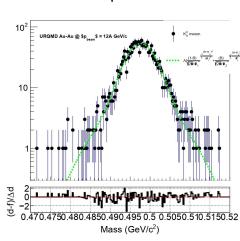
$$Fit(m) = Ae^{rac{-1}{2}rac{(m-m_0)^2}{\sigma_1^2}} + Be^{rac{-1}{2}rac{(m-m_0)^2}{\sigma_2^2}} + pol2(m)$$

- 1. Exclude signal region (m<0.43485 & m>0.56135) and fit background with pol2(m)
- 2. Use background fit parameters as initial values for next iteration, where signal (double Gaussian) fit function has fixed $m_0 = 0.4976~\text{GeV/c}^2$ and widths $\sigma_1 = 0.004~\text{GeV},~\sigma_2 = 0.007~\text{GeV}$
- 3. Use fit parameters as initial values for unconstrained fit to the whole inv. mass range

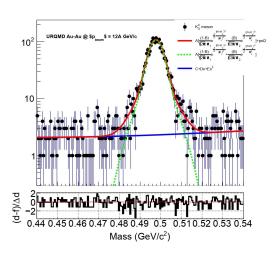




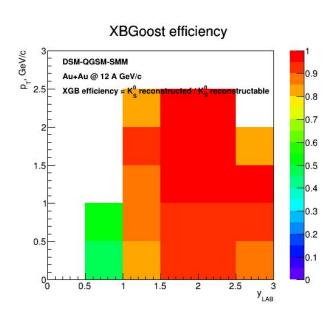
Step 2



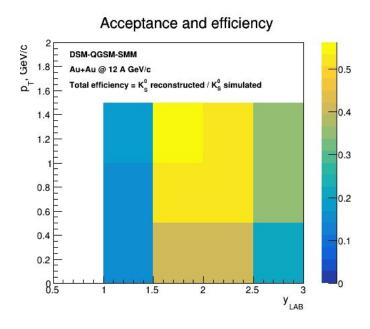
Step 3



Acceptance and efficiency of $\boldsymbol{K_S}^{\!\!\!0}$ decays reconstruction

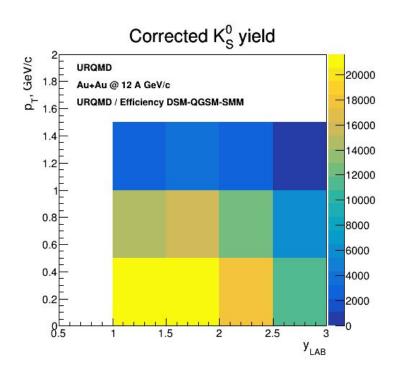


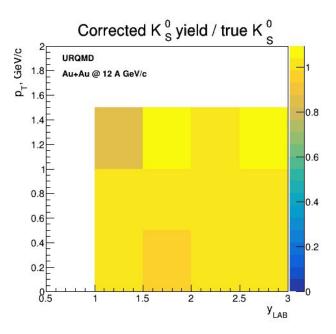
XGBoost efficiency ~ 95%



Total reconstruction (acc x efficiency) \sim up to 50%

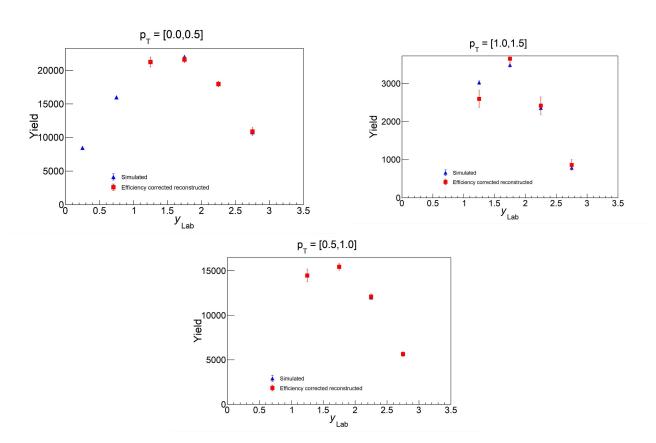
Efficiency and acceptance corrected K⁰_S yield

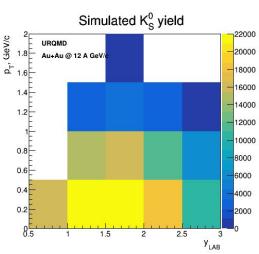




The corrected yield is in good agreement with the simulated yield

Efficiency and acceptance corrected yield





Summary

- K_s⁰ meson decays are efficiently selected using ML techniques
- Machine learning framework for analysis of particle decays was used for K_S⁰ extraction
- Optimization of selection criteria performed via XGB
- Yield, extracted after XGB selection and (acceptance x efficiency)
 corrected is compatible with initial model spectra

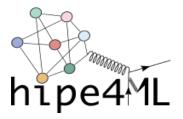
Thank you for the attention!

Back up

Machine learning implementation

- Input (root) files with signal and background
- Plot variables distributions and correlation matrices
 - o QA
 - plot (non-)linear correlations
 - Select features for optimization
- Tune parameters by Bayesian optimization
- Train and test
- Save model as C++ library
- Apply model on data
- Check results after selection
 - confusion matrix
 - o possibility to visualize the selection

 - variables distributions before and after ML cut (signal and background)

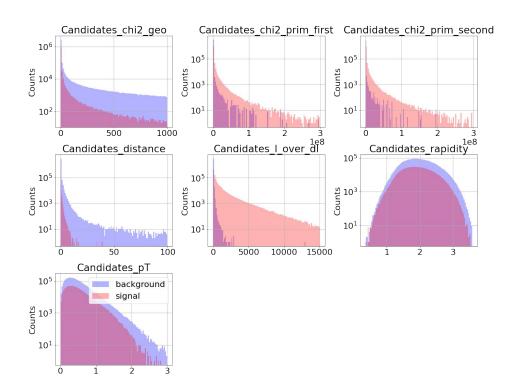


Selection optimization tool developed for ALICE Collaboration

https://hipe4ml.github.io, Tutorial

Integration with hipe4ML is in progress

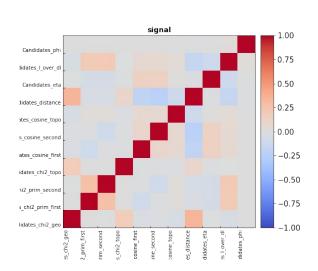
Variables distribution

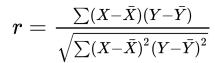


Quality cuts were applied:

- -50 < X < 50
- -50 < Y < 50
- -1 < Z < 80
- 0 < distance < 100
- 1 < eta < 6.5
- 0 < chi2_topo < 100000
- 0 < chi2_geo < 1000
- 0 < chi2_prim_first < 3e8
- 0 < chi2_prim_second < 3e8

Variables linear correlation plots

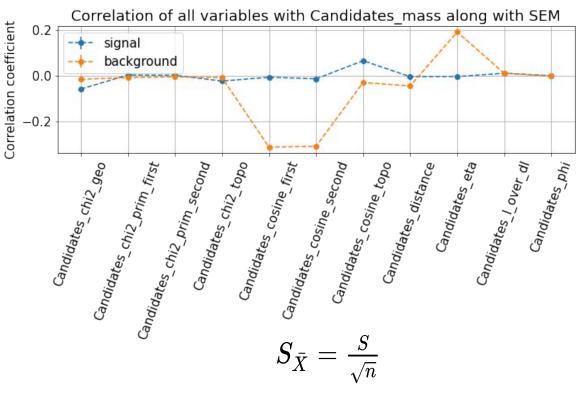




 $r-Pearson\ correlation\ coefficient,$

 $ar{X}-mean\ of\ X\ variable$

 $ar{Y}-mean\ of\ Y\ variable$

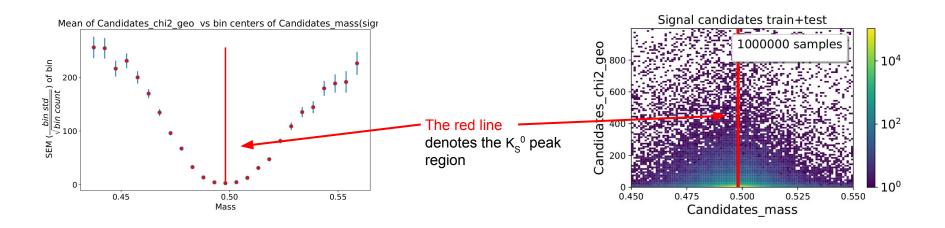


 $S_{ar{X}}-standard\ deviation\ of\ the\ mean,$

 $S-standard\ deviation\ of\ sample$

 \sqrt{n} – sample size

Non-linear correlations



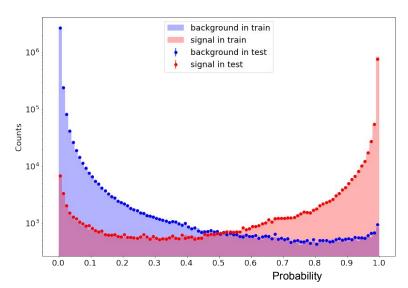
Signal is selected $\pm 5\sigma$ within the ${\rm K_S}^{\rm 0}$ peak mean

The mean of each bin of the variable, to be checked for correlation(Y axis), is plotted against the bin center of the mass variable(X axis). Also SEM is calculated for each bin and it is also shown in the same plot

2D distribution between variables and invariant mass

XGB Model evaluation

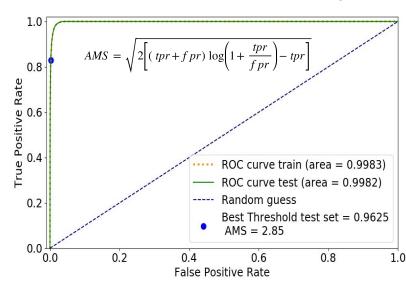
Model trained on the train sample is applied to the train-test data sets



True positive rate = tpr; Signal = S; Background = B

$$tpr = rac{S\, classified\ as\ S}{S\, classified\ as\ S + S\, classified\ as\ B} \ fpr = rac{B\, classified\ as\ S}{B\, classified\ as\ B + B\, classified\ as\ S}$$

Optimize Λ candidates selection for significance

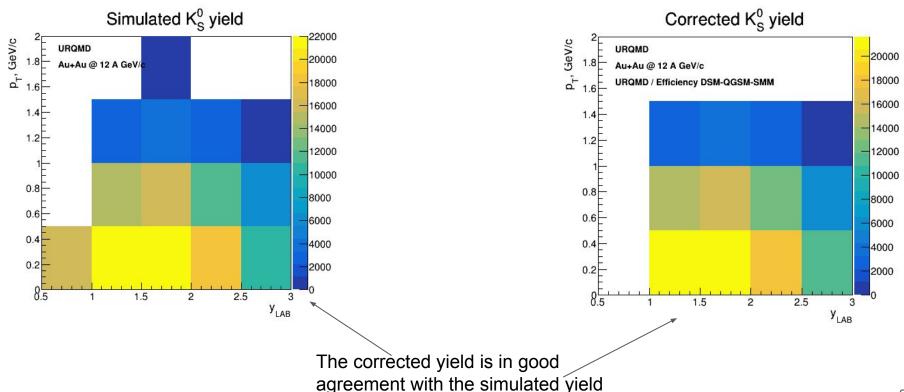


Threshold on the ROC (Receiver Operating Characteristic) curve which maximizes Approximate Median Significance (AMS) on the test sample is our Best Threshold

$$AMS_2 = \frac{s}{\sqrt{b}} \times \sqrt{1 + O\left[\left(\frac{s}{b}\right)^3\right]} \; \; ; \; b > > s \; \; \Rightarrow AMS_2 \approx \frac{s}{\sqrt{b}}$$

Shahid Khan et al.

Simulated and reconstructed K⁰_S yield



ML framework configuration with TOML

TOML format (toml.io/en) is a minimal configuration file format that's easy to read due to obvious semantics.

- Designed to map unambiguously to a hash table
- Easy to parse into data structures in a wide variety of languages

Implemented for CBM: User can specify parameters via configuration files

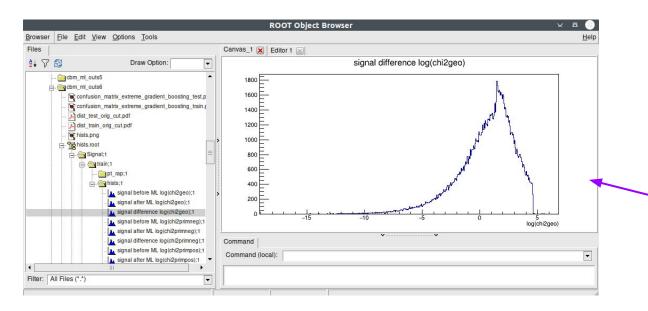
```
title = "Input path config for xgb classifier"

Signal
path = "/home/olha/CBM/dataset10k_tree/dcm_1m_prim_signal.root"
tree = "PlainTree"

Background
path = "/home/olha/CBM/dataset10k_tree/urqmd_100k_cleaned.root"
tree = "PlainTree"

deploy
path = "/home/olha/CBM/dataset10k_tree/urqmd_100k_cleaned.root"
tree = "PlainTree"
```

Output file with QA information



possible retrieve variable distribution for further check

Output PDF or PNG plot doesn't allow to do manipulations with histogram pictures (rebin, scaling), so we need to save object itself

Saved histograms as root objects for more precise comparison , could be found <u>here</u>