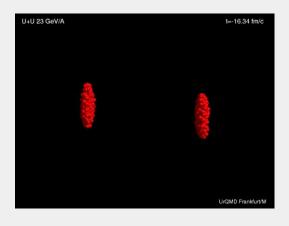


# Extraction of global event features at the CBM experiment using PointNet

Manjunath Omana Kuttan, Jan steinheimer, Kai Zhou, Andreas Redelbach, Horst Stöcker

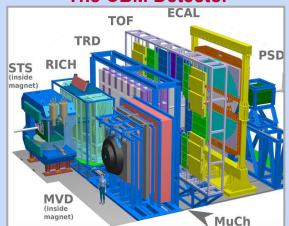
### Heavy-ion Collisions: from experiments to theory

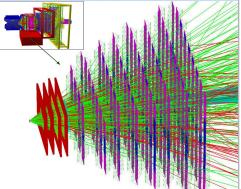
- Several established models for HIC
  - Microscopic cascade calculations
  - Hydrodynamics
  - Hybrid Micro+Macro models
- Inputs: 'b', EoS, etc.



- Next-gen experiments
  - High precision measurements
  - Unprecedented statistics
- Measure: Hits, tracks, etc.

#### **The CBM Detector**





- Upto 45 AGeV collisions
  - 10<sup>7</sup> collisions/ Second
- 1000 tracks per collision
- 1 TB/Second raw data
- How can we extract the theoretical quantities from the experimental data?
  - Conventional way: Large scale model simulations and preprocessing of data

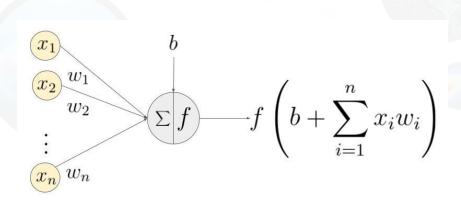
## Artificial intelligence based data analysis for HIC?

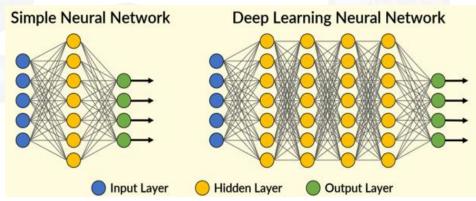
- DL/ML methods are widely used in High Energy Physics experiments
  - Data collection:
    - Calibration of detector
    - Filtering noise
    - Event separation
    - Event reconstruction
    - Particle identification
  - Analysis:
    - Reconstructing useful parameters from raw data
    - Search for new physics
    - Fast simulations
    - Build better analysis tools than conventional techniques

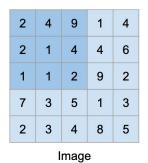


Can Deep Learning Methods be used to bridge the gap between theory and experiments in HIC?

#### ML/ DL: A quick introduction

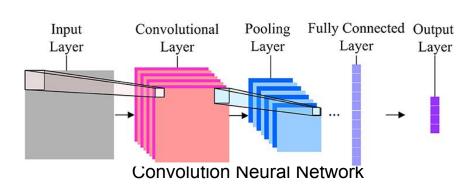






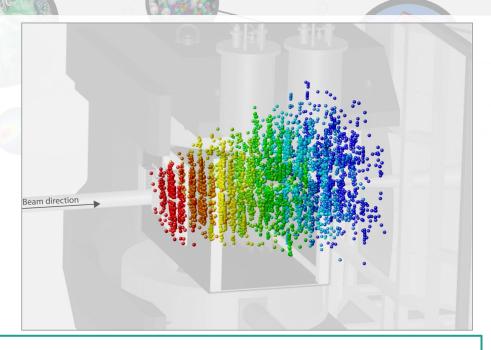
Convolution operation

Χ



#### Experimental data as point clouds

- Point cloud: set of data points in space
  - No ordering
  - $\circ \{(x_1, y_1, z_1), (x_2, y_2, z_2), ... (x_n, y_n, z_n)\}$
  - Not limited to 3 dimensions.
- Electronically collected data often has point cloud structure
  - Data from sensors, detectors etc.

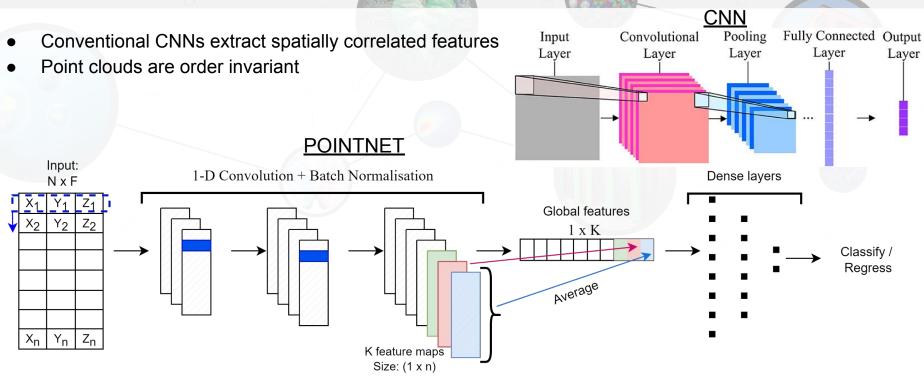


DL models operating on Point clouds



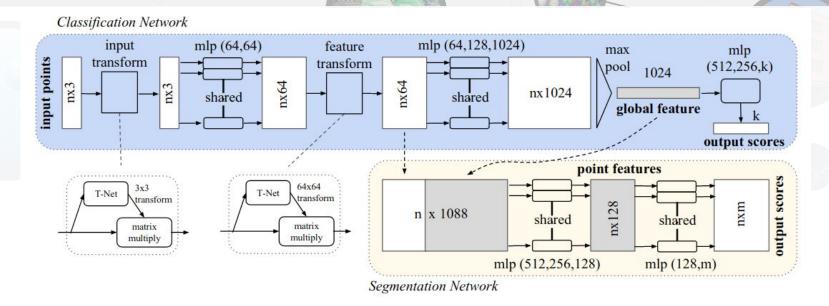
- 1. Works on free-streaming experimental data
- 2. No loss of information from histogram binning
- 3. Requires minimal preprocessing
- 4. Online physics analyses

#### PointNet: Deep Learning for point clouds



- PointNet respects order invariance by :
  - A. extracting single particle features
  - o B. Symmetric transformation of these features to global event features

#### PointNet: Detailed Structure



A point cloud is given by set of points "X":

$$X = \{x_1, x_2, x_3, ..., x_n\}$$

PointNet learns a set of functions "F":

$$F = \{f_1, f_2...f_m\}$$
where  $f_i(\{x_1,...,x_n\}) \approx g(h_i(x_1),...,h_i(x_n))$ 

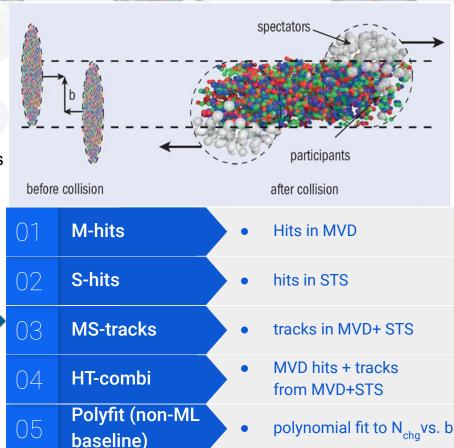
h~ MLP with shared weights/ 1D CNN g=symmetric function (maxpool, avgpool, sumpool etc.)

#### Centrality determination at CBM

- Impact parameter 'b': not experimentally measurable
  - Glauber MC
  - Percentiles of N<sub>chg</sub>, E<sub>spect</sub> are mapped to collision centrality
  - Only a 'likely' distribution for b in a centrality bin is known

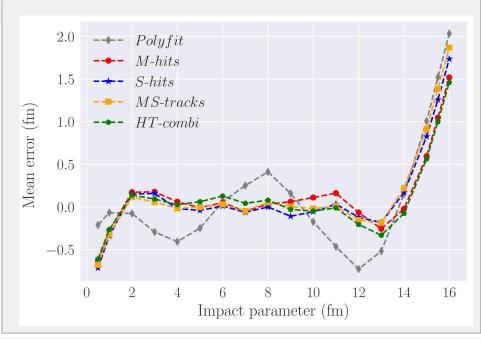
Our solution: PointNet based 'b' meter

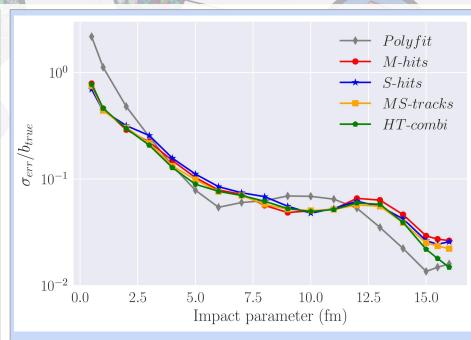
- Event-by event
- Works on direct experimental output
- Online event characterisation



#### PointNet centrality meter

- mean error -0.3 0.2 fm for b= 2- 14 fm
- Polyfit: highly fluctuating

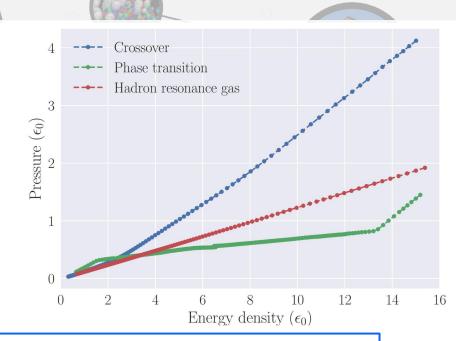




- Quantifies precision in predictions
- Polyfit fails for central events!
- Similar precision for b>3 fm

#### EoS classification with PointNet

- Essential input to fluid dynamics evolution
  - pressure of the medium for any given energy and net baryon number densities
- Incorporates the QCD transition
  - Pressure gradients drives the evolution
- Not directly accessible experimentally
  - Comparisons with model calculations
  - Multi-parameter fit to different obervables



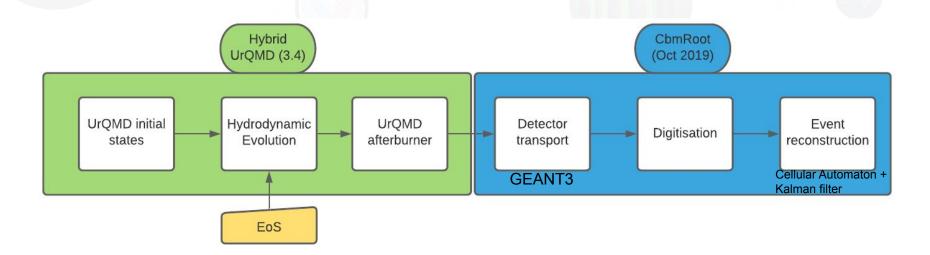
#### Our solution: PointNet EoS classifier

- We use:
  - First Order Phase transition: Maxwell construction between a bag model quark gluon EoS and a gas of pions and nucleons
  - Crossover: Chiral Mean Field hadron-quark EoS

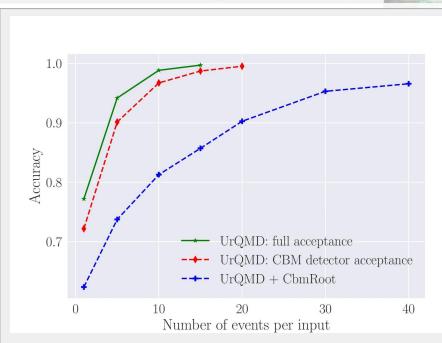
#### Data preparation

1111

- Design a DL based EoS meter for CBM experiment
  - o increased uncertainties from electro-weak decays and other detector effects
- Raw experimental data as input
  - Minimises the biases from user defined selection criterias and other analysis algorithms

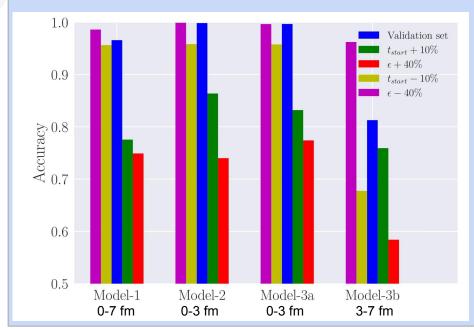


#### PointNet EoS meter



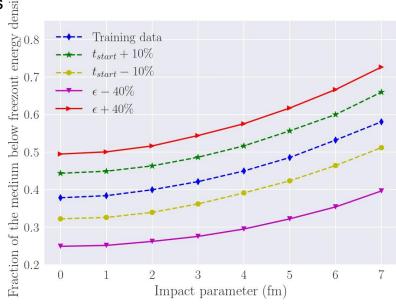
- Decrease in performance with increase in experimental effects
- Performance improves when events are combined

- Models tested for  $t_{start}$  = 10% and  $\epsilon$  = 40% from training value
- Decrease in accuracy with t<sub>start</sub>+10% or ε+40% : underlying physics limitation

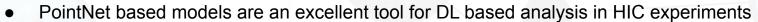


## Reasons for dependence on centrality, $t_{\text{start}}$ and $\epsilon$

- For b=0, ~62% of the medium experiences hydro while it is <sup>Ajgrad</sup>
   ~42% for b=7
- Decrease in t<sub>start</sub> or ε increases hydro duration
  - More part of system experience hydro
  - Even for b=0:
    - ~68% for t<sub>start</sub>-10%
    - $\sim$  75% for  $\varepsilon$  -40%
- Increasing  $t_{start}$  or  $\epsilon$  decreases hydro duration
  - Small fraction of system experience hydro
  - o For b=0:
    - ~55% for t<sub>start</sub>+10%
    - $\sim$  50% for  $\epsilon$  +40%
- For peripheral events, decreasing  $t_{start}$  or  $\epsilon$  could cause as less as ~25% of the medium to experience hydro



#### Summary



- The DL models outperforms conventional methods for impact parameter determination
  - Event by event
  - Reconstructs 'b' from hits/ tracks
  - Phys.Lett.B 811 (2020) 135872, Particles 2021, 4(1), 47-52
- PointNet based DL models are an efficient tool for identifying phase transition at CBM
  - Accuracy upto 99.8%
  - Online algorithm- Works with direct experimental data
  - Journal of High Energy Physics 2021 (10), 1-25
- PointNet like models: not just for HIC or CBM but easily extendable to any detector based experiments
- Ongoing works on Generative modelling of HIC
  - Generates collision event as point cloud
  - Fast simulation of collision events