

Investigation of hadronic exit channels of the π^- +C reaction at an incident momentum of 0.7 GeV/c

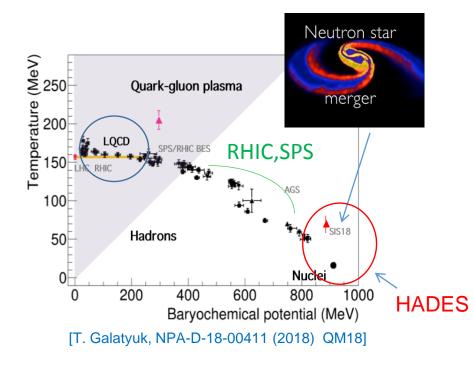
24 May 2022, Pieria

Fatima Hojeij
IJCLab
HADES Collaboration

QCD phase diagram studies

HADES objectives:

 Study hadronic matter at moderate temperature and high baryonic density.

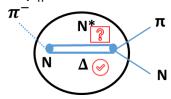

A+A: 1-3A GeV
$$\sqrt{s_{NN}}$$
=2-2.4 GeV

(compl. to LHC, SPS, RHIC,...)

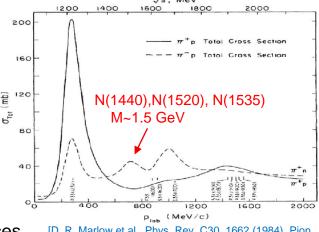
 Microscopic structure of baryon dominated matter

Role of baryonic resonances (excited states of nucleons), hyperons

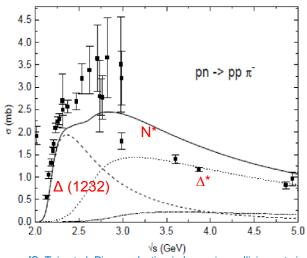
 $\Delta(1232)$ $N^*(1440)$ $N^*(1520)$ $N^*(1535)$ Etc ...


The heavy ion context

In heavy-ion collisions at a few AGeV, pion dynamics crucial to describe the evolution of the collision:

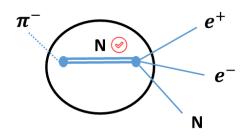

- ✓ real pions copiously produced $(NN \to NN\pi, \pi + N \to N^*/\Delta)$
- ✓ NN interaction driven by pion exchange

- \checkmark p+A or A+A at $\sqrt{s_{NN}}$ < 2.6 GeV Δ(1232) region (p_π =250 MeV/c) well-known
- p+A or A+A at $\sqrt{s_{NN}}$ > 2.6 GeV, information on higher lying resonances needed: N(1520) region p_π ~ 700 MeV/c has not been explored.



- 300<p<500 MeV/c : few measurements $(\pi, \pi x)$ or $(\pi, \pi \pi x)$ (LAMPF, TRIUMF, KEK)
- p>500 MeV/c: only total cross sections (Saturne-1, NIMROD, BNL) and differential elastic cross sections (KEK).

[D. R. Marlow et al., Phys. Rev. C30, 1662 (1984), Pion cattering From C and Ca at 800-MeV/c.]


[S. Teis et al. Pion production in heavy ion collisions at sis energies, Z. Phys., A356:421, 1997.]

π^- +C in the 2nd resonance region

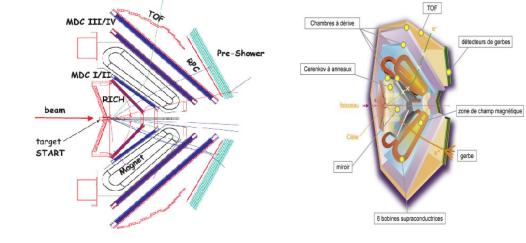
1st investigation of the 2nd resonance region with HADES:

 π^- + C \to e⁺ e⁻ + X @ 0.685 GeV/c consistent with quasi-free process : π^- + p \to e⁺ e⁻ + n.

e+/e-: no rescattering very different for hadronic channels

[HADES collab., to be submitted]

Our aim:


Investigate different hadronic exit channels in π^- + ¹²C reaction for 2nd resonance region :

- Information on pion-nucleus dynamics in the second resonance region (N1520).
 - study reaction mechanisms: quasi-elastic, rescattering, pion absorption,...
 - Sensitive test INCL cascade and transport models (Smash, RQMD...).
 - INCL is used in toolkits for the simulation of the passage of particles through matter (Geant).
 - SMASH & rQMD are used for the description of heavy ion collisions.
 - PLUTO event generator is also used for quasi-free simulations.

HADES

High Acceptance DiElectron Spectrometer (GSI, Darmstadt)

Experiments (2004-2014)

Hadronic matter studies :

C+C 1 & 2 AGeV, Ar+ KCl 1.75 AGeV Au+Au 1.25 AGeV Aq+Aq 1.65 AGeV

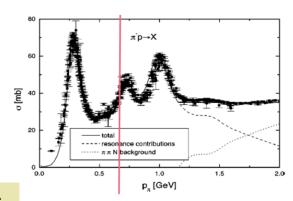
Elementary reactions :

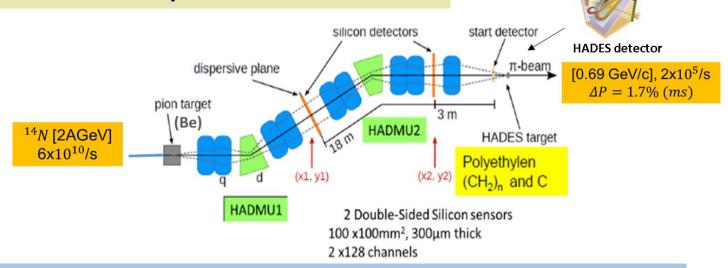
p+ p 1.25, 2.2, 3.5 GeV, d+p 1.25 GeV/nucléon π -+CH₂/C 0.7 GeV/c

Cold matter:

p+Nb 3.5 GeV, π^- +C/W 1.7 GeV/c

- ► Acceptance: Azimuthal angles 85% (6 sectors) polar angles: 18° 85°
- ▶ Detected particles: e^{\pm} , p, π^{\pm} , K^{\pm}
- ▶ Tracking: MDC
- ▶ e[±] identification with RICH, TOF/PreShower
- \triangleright p, π^{\pm} , K^{\pm} identification TOF-Tracking

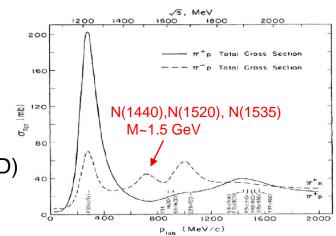

Pion beam experiment @ GSI



- August 2014 commissioning experiment
- Total ~15 days of measurements
- Main run: momentum $p_{\pi} = 0.690 \text{ GeV/c}$ ($\sqrt{s}=1.49 \text{ GeV}$)
- Polyethylene (CH₂) and carbon targets
- Secondary pion beam
- Trigger on at least 2 charged particles.
- Data on carbon mainly used for subtraction of π^-+C interactions in CH2 target to study π^-+p reaction.

[HADES collab., Phys.Rev. C102 (2020) no.2, 024001] [HADES collab., to be submitted]

• Large statistics for hadronic channels (π^+ , π^- ,p) on carbon target to be used for dedicated analysis.

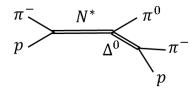


Main channels in $\pi^- + {}^{12}C$

Channels with 2 charged particles

- ☐ Quasi-elastic and charge exchange:
- $\pi^- + p \rightarrow \pi^- + p$ quasi-elastic scattering σ = 17.8 mb (SAID)
- $\pi^- + n \rightarrow \pi^0 + p$ charge exchange $\sigma = 10$ mb (SAID)

- ☐ Inelastic (pion production)
- $\pi^- + p \rightarrow n + \pi^- + \pi^+ \sigma = 6.1 \text{ mb}$


[HADES collab., Phys.Rev. C102 (2020) no.2, 024001]

•
$$\pi^- + p \rightarrow p + \pi^- + \pi^0 = 3.3 \text{ mb (idem)}$$

•
$$\pi^- + n \rightarrow p + \pi^- + \pi^- \sigma = 0.4 \text{ mb}$$

Main contribution from s-channel N^{*} excitations,

$$N^* \to \pi \Delta$$
, σN , ρN

- **□** Multi-step: rescattering π N \rightarrow π N, NN \rightarrow NN
- \square π -N $\rightarrow \pi$ N followed by NN \rightarrow NN π kinematically suppressed
 - \rightarrow two-pion production occurs mainly in the same step, via $\pi N \rightarrow \pi \pi N$

Benchmark of models

Participant-spectator model : PLUTO

¹²C = participant off-shell proton + spectator on-shell 11B

π- interact with an off-shell proton moving with momentum distribution in agreement with (e,e'p) ⁽¹⁾

Further interaction of particles not taken into account

Only elastic channels included (by choice).

IntraNuclear Cascade model : INCL

 ^{12}C = (on-shell nucleons) nucleon Fermi gas

 π - + p (moving and on-shell) \rightarrow π - + p + X

Further interaction of particles taken into account, depending on cross section

Nuclear mean field is acting on products.

inelastic channels are also included

SMASH & rQMD

¹²C =(on-shell nucleons) nucleon Fermi gas?

 $\pi^- + p$ moving and on-shell $\rightarrow \pi^- + p + X$

Further interactions are taken into account

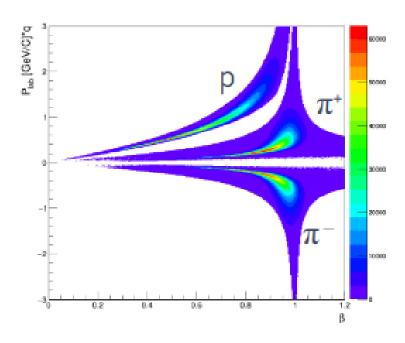
inelastic channels are included

All baryonic resonances included

- □ Pluto is a Monte Carlo <u>simulation framework</u> developed by the HADES collaboration for heavy ion and hadronic-physics reactions.
- Simulations processed in GEANT; comparison data with simulations in acceptance.

(1) [K. Nakamura et al., Nuclear Physics A, Volume 268, Issue 3, 21 September 1976, Pages 381-407]

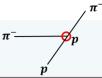
PID & Normalization



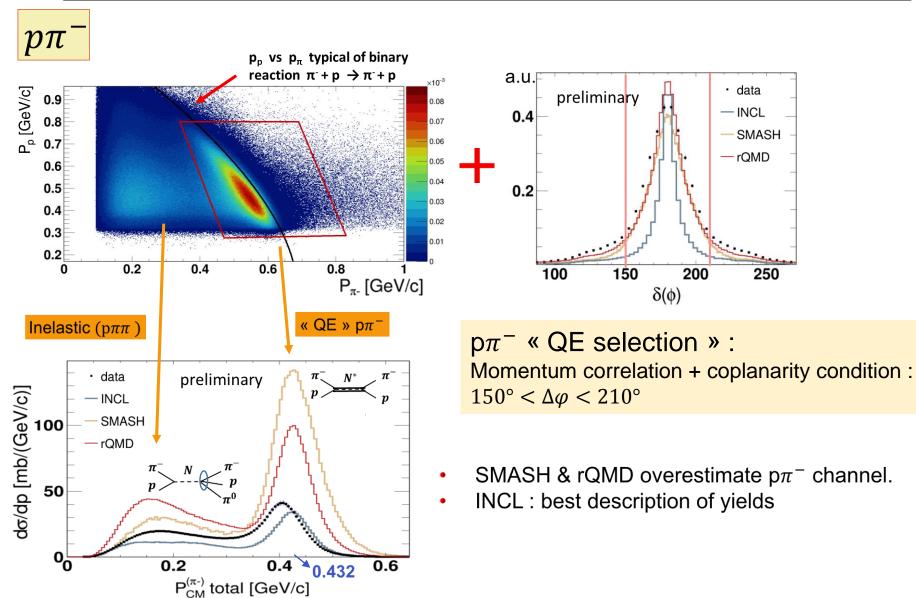
Particle identification is done using

on momentum-velocity correlation

Velocity Vs Momentum

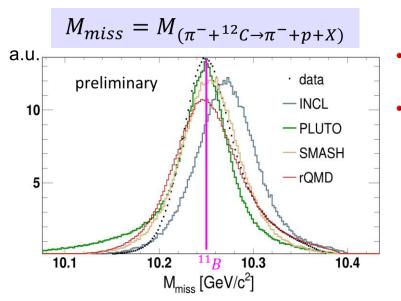


Data normalisation (counts -> mb/unit) :

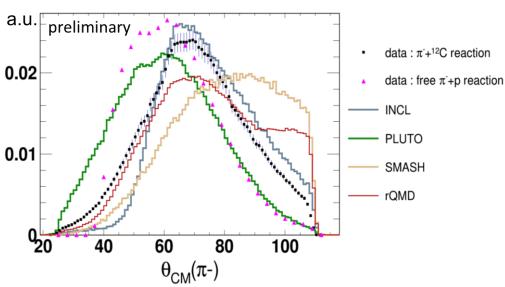

Using measurements on C and CH2 targets and known π^- + p elastic scattering cross-section, global systematic error = 4%.

statistical errors are negligible, point to point systematic errors (diff dist): 5%

Selection of quasi-elastic channel



$p\pi^-$: "quasi — elastic"

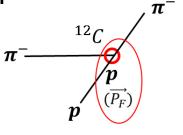


- Data and transport models: missing mass close to ¹¹B mass.
- Missing mass shifted in INCL.

Distributions are normalized to the surface in order to compare shapes.

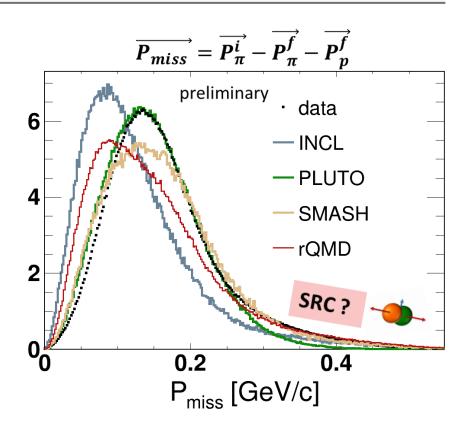
- Ang. distrib. different from free π^- +p elastic scattering.
- INCL reproduces well pion angular distribution.
- PLUTO closer to free π^- +p data especially **0.01** for high angles.
- rQMD reproduces well small angles but overestimates very high angles.
- SMASH does not reproduce well angular distribution.

Search for Short Range Correlations



$$p\pi^-$$
: " QE "

« pure quasi-elastic » :
off-shell participant (p) +
on-shell spectator (¹¹B)


$$\overrightarrow{P_{miss}^{i}} + \overrightarrow{P_{p}^{i}} = \overrightarrow{P_{p}^{f}} + \overrightarrow{P_{m}^{i}}$$

$$\overrightarrow{P_{miss}} = \Delta \overrightarrow{P} = -\overrightarrow{P_{p}^{i}}$$

SRC:

Nucleon pairs that are close together in the nucleus high relative and low c.m. momentum, compared to the Fermi momentum (kF)

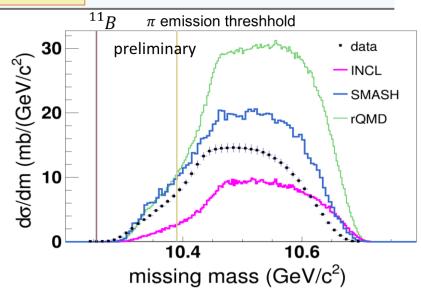
- Pluto: describes the missing momentum very well.
- INCL: proton momentum underestimated by Fermi gas distribution + rescattering.
- Data: Large tail for high proton momentum in Carbon. SRC or rescattering effects?

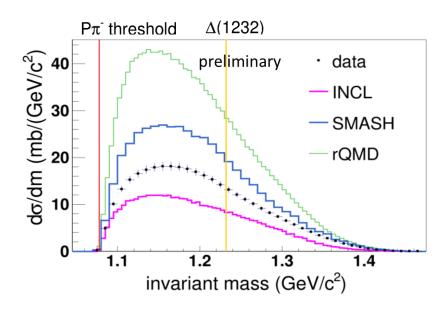
$p\pi^-$: Inelastic

Single step

e step
$$\pi^{-} + p \rightarrow \pi^{0} + p + \pi^{-}$$

Multi step

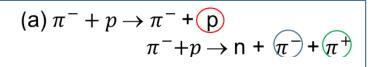

$$\pi^{-} + p \rightarrow \pi^{-} + p$$

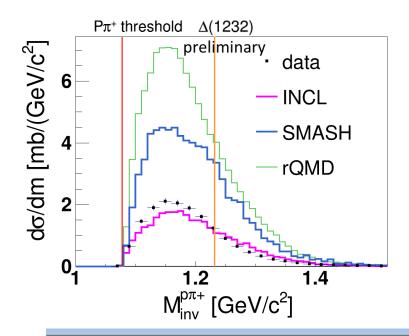

$$\pi^{-} + p \rightarrow n + \pi^{+} + \pi^{+}$$

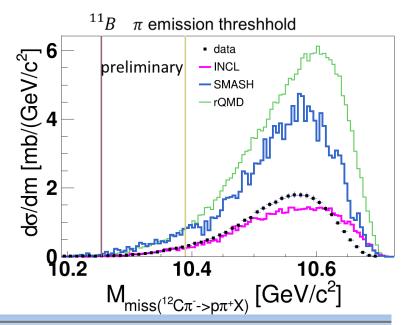
$$\pi^{-} + p \rightarrow \pi^{0} + n$$

$$\pi^{0} + p \rightarrow p + \pi^{+} + \pi^{+}$$

- No clear presence of Δ^0 .
- rQMD in agreement with data, but overestimates yields.






- $p\pi^+$ is necessarily an inelastic channel with two steps.
- Yields much lower than for $p\pi^-$ inelatic.
- Shifted missing mass w.r.t pπ⁻ inelastic .
- No clear sign of Δ++ in data.

(b)
$$\pi^- + p \rightarrow \pi^0 + n$$

 $\pi^0 + p \rightarrow p + \pi^+ + \pi^+$

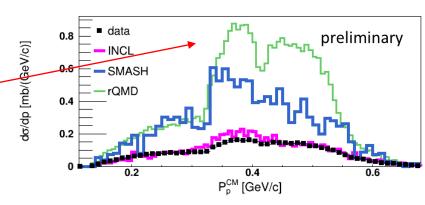
(c)
$$\pi^- + p \rightarrow \pi^0 + p + \pi^-$$

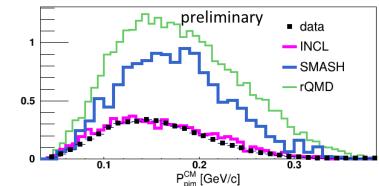
 $\pi^0 + p \rightarrow n + \pi^+$

Two pion production (1)

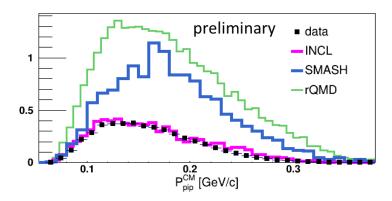
do/dp [mb/(GeV/c)]

do/dp [mb/(GeV/c)]


$p\pi^-\pi^+$


(a)
$$\pi^- + p \rightarrow \pi^- + p$$

 $\pi^- + p \rightarrow n + \pi^- + \pi^+$
Elastic $p\pi^-$ kinematics $P_{cm} \sim 0.4$ GeV/c


(b)
$$\pi^{-} + p \to \pi^{0} + n$$

 $\pi^{0} + p \to p + \pi^{+} + \pi^{+}$

(c)
$$\pi^{-} + p \rightarrow \pi^{0} + p + \pi^{-}$$

 $\pi^{0} + p \rightarrow n + \pi^{+}$

- SMASH and rQMD way too large yield, very good decsription by INCL.
- In particular, too large contribution in rQMD of quasi elastic $p\pi^-$ scattering in first step (a).
- π^- and π^+ play a symmetrical role. Dominance of (a) and (b).

INCL++ does a good job

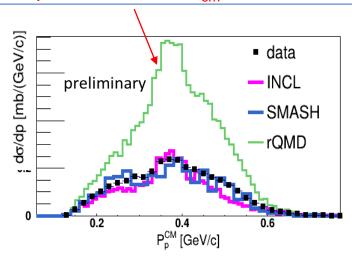
Two pion production (2)

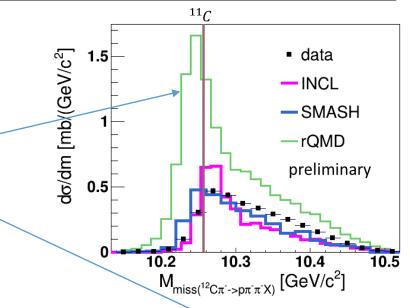
$p\pi^-\pi^-$

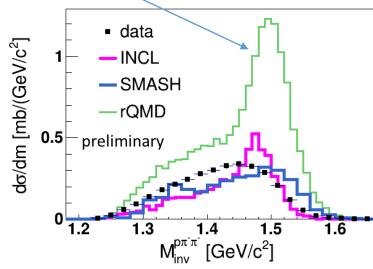
Single step production:

$$\pi^- + n \rightarrow p + \pi^- + \pi^-$$
; recoiling 11C

→ Minimum missing mass, max inv. mass


Two step production:


$$\pi^- + p \rightarrow \pi^- + p$$


$$\pi^- + n \rightarrow p + \pi^- + \pi^-$$

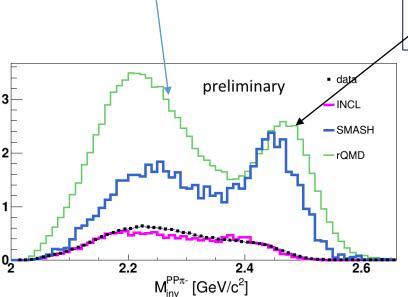
→ larger missing mass, lower inv. mass

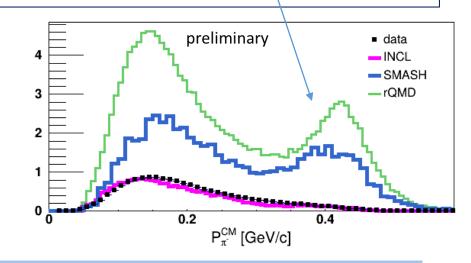
Elastic $p\pi^-$ kinematics $P_{cm} \sim 0.4~GeV/c$

2-step processes with 2 π production

$$\pi^{-} + p \rightarrow \pi^{-} + p$$
 $\pi^{-} + p \rightarrow \pi^{-} + \pi^{0} + p$

Overestimated by rQMD Ok in SMASH


2-step processes with 1 pion production -> max inv. mass

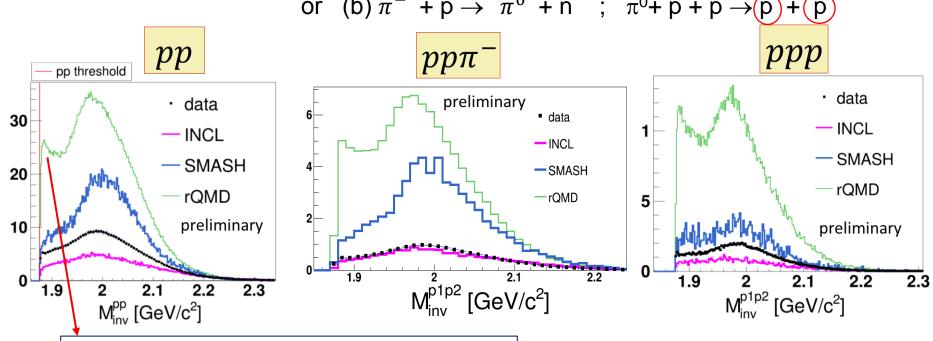

$$(a)\pi^{-} + p \rightarrow p + \pi^{-}$$

 $p + p \rightarrow p + p$

(b)
$$\pi^- + p \rightarrow \pi^- \stackrel{p}{\xrightarrow{\pi^- + p}} \rightarrow \stackrel{\pi^- + p}{\xrightarrow{\pi^- + p}} \rightarrow \stackrel{\pi^- +$$

not favored by data

Overestimated by rQMD and SMASH Underestimated by INCL++


Pion absorption investigation

• 3p channel needs 3 steps (π^-N) or π N rescattering step)

Possibility of pion absorption ? $\pi^- + p \rightarrow \pi^- + p$

followed by (a)
$$\pi^- + p + p \rightarrow n + p$$
; $n + p \rightarrow n + p$ or (b) $\pi^- + p \rightarrow \pi^0 + n$; $\pi^0 + p + p \rightarrow p + p$

Small M_{inv} $^{\rm pp}$ due to proton rescattering $\pi^- + p \to p + \pi^ p + p \to p$ +p overestimated by rQMD

Inv. mass very similar in the 3 channels, no sign of π absorption ? Better investigation of pion absorption would need neutron reconstruction

Conclusion

- Study of different hadronic channels of π^- +12C reaction @0.69 GeV/c measured with HADES
- Sensitive test of implementation of different processes: quasi-elastic, pion production, absorption in INCL++ and transport models (RQMD,SMASH)
 - Large dispersion of model predictions: INCL++ does a rather good job for channels with a detected pion. Overestimation of experimental yields by rQMD and SMASH, except $p\pi^-\pi^-$ and $\pi^-\pi^-$ in SMASH, to be discussed with experts
- Comparison with GiBUU on-going

Outlook:

Access to Short Range Correlation Effects in Quasi-elastic process ? Correct diff. distr. to 4pi -> estimate total cross sections.

Backup

Normalization

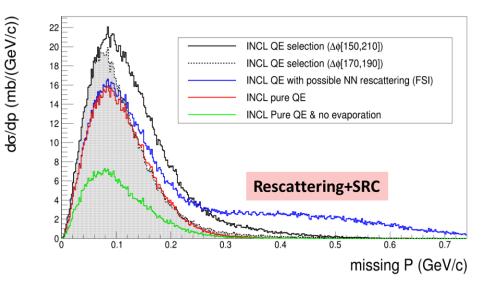
Data :
$$F_{Norm} = 2 \times \frac{\sigma_{el}}{N_{el}} \times F_{C/CH2}$$
.

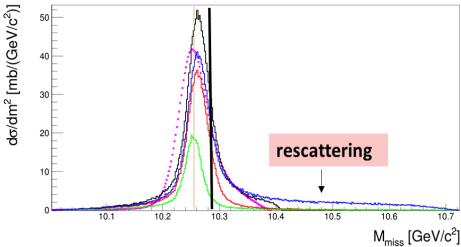
- Normalisation for pi-+p cross section CH2 target (all statistics): $\frac{\sigma_{el}}{N_{el}}$ = 1.107x10⁻⁷
 - σ_{el} known cross-section of elastic scattering in full solid angle.
 - N_{el} number of elastic scattering events in full solid angle
- relative normalisation C (all stat.)/CH2 (all stat.) = $F_{C/CH2}$ = 1./0.2178.

SMASH & rQMD:
$$F_{Norm} = \frac{\pi^*b^2}{\text{Number of shots}}$$

- b= 5 fm.
- Number of shots = $9.9*10^7$ (rQMD) & $9.9*10^6$ (SMASH)

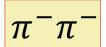
$$9.9*10^{7}$$

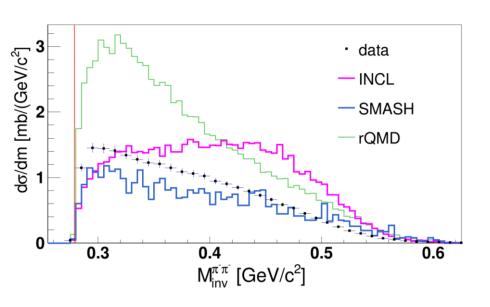

INCL:
$$F_{Norm} = \frac{\sigma_{reaction}}{\text{Number of shots}}$$

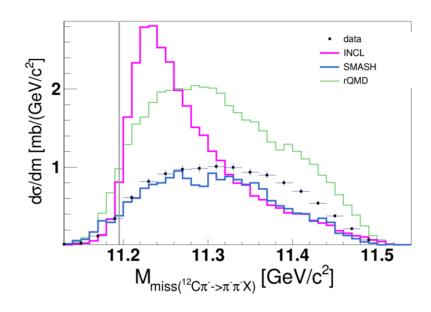

- $\sigma_{reaction} =$ 1462.32 mb.
- Number of shots = 100 000 000.

SRC preliminary study

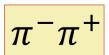
$$p\pi^-$$
: " QE "

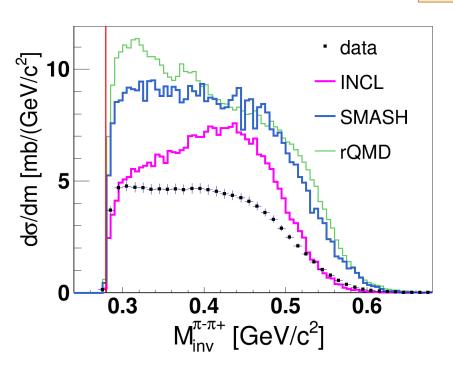


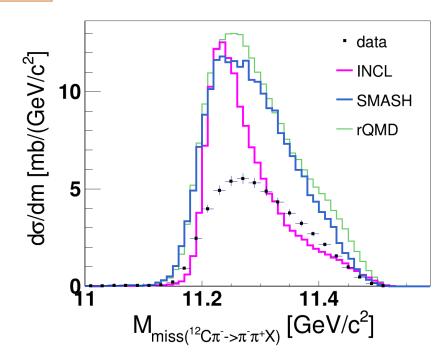



Adjusting cuts to reduce rescattering effects:

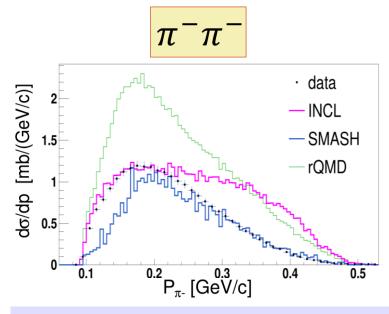
- \triangleright Restrict $\Delta \varphi$ (coplanarity condition of p and π^-)
- Cut high excitation missing mass values



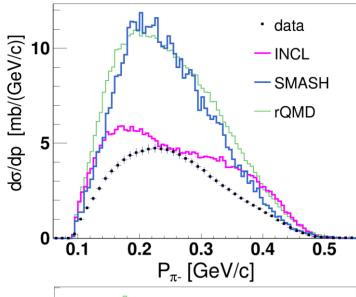


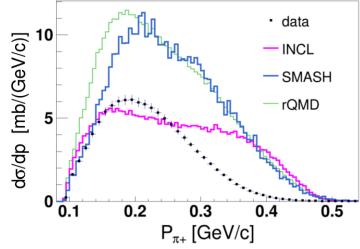


- INCL: Mmiss low and Minv high
- RQMD : Minv more peaked at low values

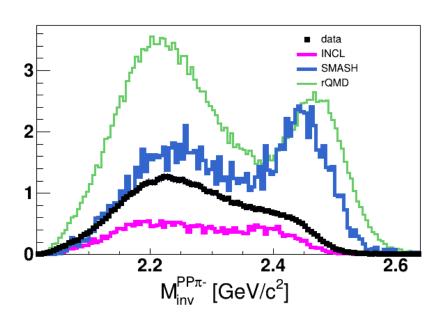


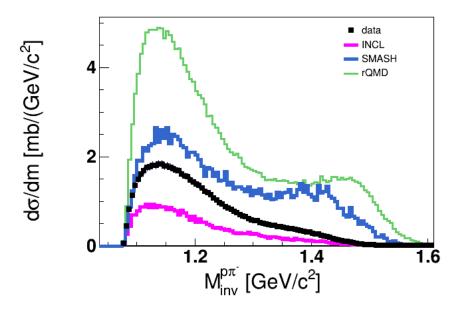
- INCL : Mmiss low and Minv high
- RQMD : Minv more peaked at low values

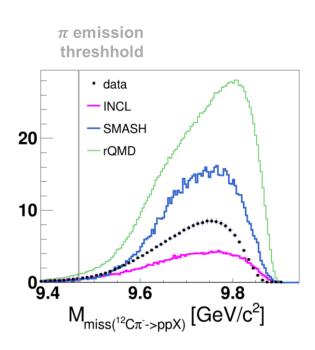

Two pion production (3)

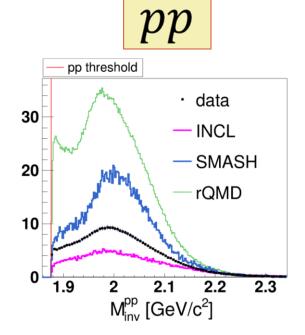


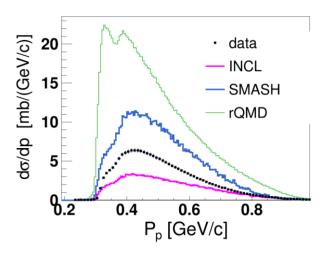
- \rightarrow $\pi^-\pi^-$ same 2-step processes as p $\pi^-\pi^-$
- > $\pi^-\pi^+$ can be produced in π^- + p \rightarrow n + π^- + π^+ σ = 6.2 mb \rightarrow higher yields
- Data : same distribution for π^- and π^+ momenta in $\pi^-\pi^+$. For $\pi^-\pi^-$, π^- momenta shifted to lower values. Consistent with $p\pi^-\pi^-$.
- INCL: two broad pion momentum distributions
- SMASH: overestimates $\pi^-\pi^+$ yields, but $\pi^-\pi^-$ are fine (consistent with p $\pi^-\pi$)

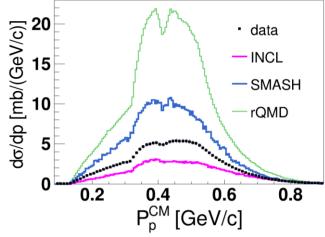


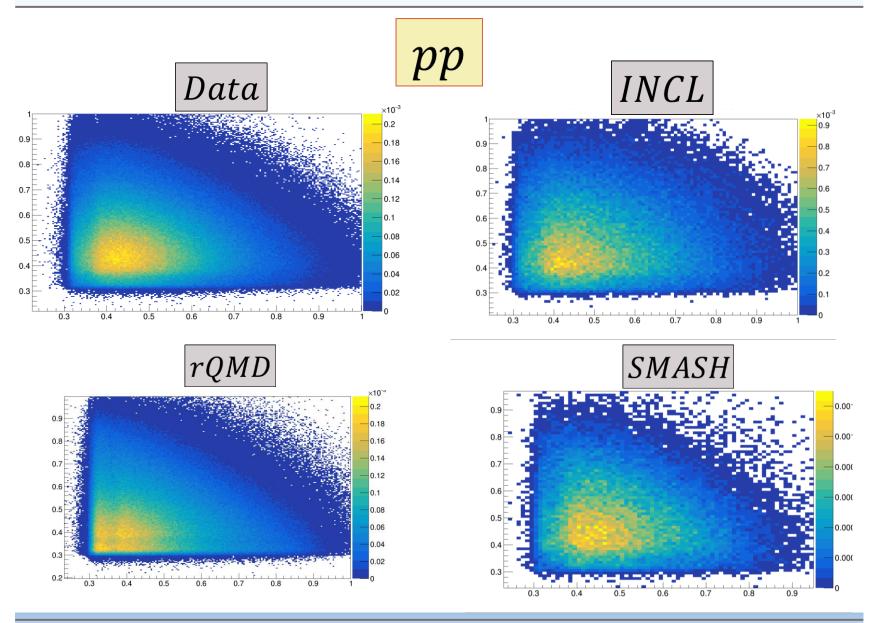


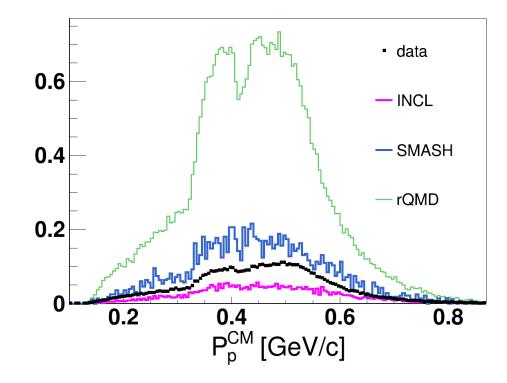



$pp\pi^-$









ppp

