FOR ANTIPROTON AND ION RESEARCH (FAIR)

Neutral mesons flow and yields in AgAg@1.58 A Gev at HADES

Alexandr Prozorov

Nuclear Physics Institute of the Czech Academy of Sciences, Rez

Outline

- Motivation : Equation of State
- HADES overview with ECAL
- Data analysis and calibration
- Neutral pion yields
- Flow

Motivation

- Study of particle production from fireball and constrains of EOS
- Neutral meson production important observable to study reaction mechanism
- With ECAL -> studying of various reaction channels with photons (e.g. hyperons)

 $\pi^0/\eta -> \gamma\gamma$

**Phys.Rec. C67 (2003) 024903

Equation of state

High Acceptance Di-Electron Spectrometer

- Fixed target experiment at SIS18 (GSI, Germany)
- Almost full azimuthal angle and polar angles between 18° and 85° covered
- RICH for identifying leptons
- MDC for tracking
- ECAL for electron + photon energy
- TOF+RPC velocity

HADES vertical cross section

Ag+Ag@1.58 A GeV beam time 2019 and perfomance

March 2019 \rightarrow Ag+Ag@1.58AGeV \rightarrow 14 billion events

π^0 DECAY MODES		Scale factor/ nfidence level	<i>p</i> (MeV/ <i>c</i>)
2γ	(98.823±0.034) %	S=1.5	67
$e^+e^-\gamma$	(1.174±0.035) %	S=1.5	67
γ positronium	$(1.82 \pm 0.29) \times 10^{-2}$	-9	67
$e^{+}e^{+}e^{-}e^{-}$	(3.34 ± 0.16) \times 10^{-1}	-5	67
$e^+ e^-$	(6.46 ± 0.33) $ imes 10^{-1}$	-8	67

- Collected about 14 billion events in
 Ag+Ag@1.58A GeV experiment in March 2019
- New electromagnetic calorimeter ECAL is based on lead-glass modules -> detection of direct photons
- ECAL was used for the first time
 - 4 sectors were installed in March 2019
 - by end of 2022 full setup

Phase space and event characterization

Rather than describe particle distribution, or phase space, in radial momentum coordinates with 3 variables, one can make a use of symmetry in an azimuthal angle and use 2 variables instead:

- For azimuthal component : $p_t = \sqrt{p_x^2 + p_y^2}$
- And along z axis, it is rapidity $y=\ln \frac{E+p_z}{E-p_z}$ which is more usable than velocity β of a particle.

Transverse momentum p_t and a rapidity difference Δ y are invariant under Lorentz boosts along z.

Electromagnetic calorimeter

phase space in acceptance of ECAL

Detectors modules

- 6 sectors covering 12° < θ < 45°
- Cherenkov lead glass modules from OPAL end cap calorimeter (163 modules x 6 sectors = 978 each 16 kg)

Module dimenstions: 9.4 x 9.4 x 60 cm³

PMT read out (with two different types)

- EMI 9903kB (1.5")
- Hamamatsu R6091 (3")

Alexandr Prozorov

Calibration of ECAL by leptons

Time-walk effect

leptons develop in ECAL elmg. shower like photons

$TWC = Time_{ECAL} - Time_{RPC} = a_0 + \frac{a_1}{\sqrt{TOT - a_2}}$

Time precision - 200ps

COME & KISS * : Charge Measurement with an FPGA

- Idea: Modified Wilkinson ADC
- Integrate input signal with a capacitor
- Discharge via a current source → fast crossing of zero
- Q2W: Measure time to reach zero ~Q using an FPGA-TDC

E ∝ the charge of PMT signal ∝ Time-over-Threshold

Energy precision -5.9%

Neutral pion reconstruction via γγ decay

Photon definition:

- No match with charged particle tracks
- No match with charged hit
- Signal in ECALMinimum energy 100 MeV

Photon pair cut: opening angle θ_{op} cut > 6°

Phase space region:

- $0.1 < y_{cm} < 0.9 -$ forward rapidity, almost covering midrapidity
- Access for low p_t region via 2-photon decay reconstruction

Diphoton combinations

Events classification used for mixing:

- centrality class
- photon multiplicity
- target segment

All – experimental data CB – mixed-event

combinatorial background

Sig – signal

Centrality

Calibration with pi0 peak position

- Iteration steps:
- For each cell, fill invariant mass distribution, where one photon is in the cell, second anywhere in ECAL
- Find π_0 peak position by mixed-event CB subtraction
- Calculate correction factor $c_i = (m_{\pi 0} / m_i)^n$
- Recalculate mass with new energies and repeat iterations $E_{corr} = c_i * E_{i-1}$
- In this case, $c_i = c_i (E_{old})$

$$m_{\gamma\gamma} = \sqrt{2E_{\gamma,1}E_{\gamma,2}(1-\cos\theta_{12})}$$

All – experimental data CB – mixed-event combinatorial background

Sig – signal

Multi-differential analysis

Normalized pion multiplicity comparison for different collision systems

- Comparison with an average of charged pions yields
- Error bars represent the systematic uncertainties
- Quantitative agreement for selected centrality bins
- Most central bin 0-10% is not shown
 - Efficiency with high charged track occupancy is still under investigation

Normalized pion multiplicity comparison for different collision systems

- HADES presented data extrapolated to 4π using model (UrQMD)
- Consistency with world data (TAPS Collaboration)
- Systems are normalized by number of participants

Phys.Rev. C84 (2011) 014902

Directed and Elliptic flow of neutral pion

Fourier decomposition:

$$\frac{dN}{d\Delta\varphi} \sim \left(1 + 2\sum v_n \cos(n\,\Delta\varphi)\right)$$

$$\frac{dN}{d\Delta\varphi} = c * [1 + 2v_1\cos(\Delta\varphi) + 2v_2\cos(2\Delta\varphi)]$$

Elliptic flow

- Reaction plane angle is reconstructed using Forward Wall Detector
- Event plane resolution determined from subevent resolution and is accounted for. Based on Ollitrault method arXiv:nucl-ex/9711003

Directed flow of neutral pion

Directed and Elliptic flow of neutral pion

Summary and Outlook

- A newly installed electromagnetic calorimeter was successfully used in experiment
- A calibration of ECAL based on leptons and pi0 peak was performed – achieved 5,9% energy precision
- First results on neutral pion yields at such energies in heavy projectile-target collision system and comparison to the world data – an input to world systematics
- Preliminary flow results of neutral pions is presented and will be compared to various transport models.

Thank you for your attention!

- Work supported by:
- MEYS CZ LM2018112 grant
- FAIR-CZ-OP grant CZ.02.1.01/0.0/0.0/16_013/0001677
- LTT17003

Ag+Ag@1.58 AGeV beam time 2019 and perfomance

- In March of 2019 experiment Ag+Ag at 1.58 AGeV
- 15 billion events collected
- 16-18 kHz event rate
- FAIR Phase-0 program

- PMT readout with two different types
- 4 sectors ready for beamtime in 2019
- 5th ready now, 6th in 2022

- 0-30% most central
- Deduced from a Glauber MC model

COME and KISS

COME & KISS: Charge Measurement with an FPGA

- Idea: Modified Wilkinson ADC
- Integrate input signal with a capacitor
- Discharge via a current source
 - → fast crossing of zero
- Q2W: Measure time to reach zero
 - ∼**Q** using an **FPGA-TDC**

Clustering in ECAL

Several adjacent fired modules are grouped in so-called **clusters**.

For the calibration -> use only cluster size 1 leptons

Photon cand distribution

GEANT+analyzed+eff.correcred+acceptance corrected

Efficiency

 $\textit{Efficiency}_{\gamma} = \frac{\textit{identified photons from primary } \pi_0}{\textit{all emmited photons from primary } \pi_0}$

$$Efficiency_{e^{\pm}} = \frac{identified\; leptons\; in\; ECAL}{identified\; leptons\; in\; HADES}$$

(wrt. photon acceptance)