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e One of physics goals of pp 4.5 GeV proposal:

O

Hyperon radiative and Dalitz decay

Provide insight into photon-hyperon coupling,

including applicability of Vector Meson Dominance K/ " S
model beam targel.%
: P
Dalitz decays of A(1520)/%(1385) — Ae*e" allow for first p T

measurement of hyperon Form Factors in time-like

: b F(Q%)
region. o
Production cross-sections of A(1520)/%(1385) are not
yet measured in pp and pA reactions at HADES g momen..
energies. :;m
Hadronic decays of A(1520) — At and 2(1385) — e 0 52
ATUTU (large branching ratios) can be used for Expected dependence of FF for nucleon
normalization for Dalitz decay studies. resonances (N*)

Physical Review D73, 114001 (2006) 3



Selection of X7(1385) candidates

Reconstruction of A(1115) and reduction of PV
background utilizing neural networks. P A
Reconstruction of Art* signal E;

Search for Z*(1385) and background subtraction. .

Analysis of Z*(1385) signal distributions:

o Invariant mass Pp+p—2%(1385) + X
o Transverse momentum I_>/\(1115) +@

o Rapidity | I I
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HADIES

HADES experiment in pp 3.5 GeV

e High Acceptance Di-Electron Spectrometer (HADES)

operating on a beam from the SIS18 synchrotron at the

GSl research facility.

e The experiment uses a stationary target.
e Specialized in the detection of dileptons (e.g.
electron-positron pair) and hadrons during heavy-ion

collisions in the 1-4 GeV energy range.

e High angular acceptance: 18° - 80° (now upgraded + 3° - 7°

with Forward Detector — details in Gabriela Perez talk) in

polar angle and almost complete in azimuthal angle.

https://www-hades.gsi.de/



https://www-hades.gsi.de/

Artificial Neural Networks

e Artificial Neural Networks - machine learning
methods inspired by structure of biological
neural networks present in human and animal
brains.:

o Training information presented in the form
of examples.

o Information gathered during training
stores in the form of strength (weights)
of connection between neurons in the
network.

e Multilayer Perceptron (MLP) - most commonly
used class of feedforward artificial neural

networks.
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Mixed Sample 1 Mixed Sample 2

Classification without labels {83888

Neymann-Pearson Lemma: the optimal classifier is

the ratio of probabilities of the event being signal

and background respectively, or any classifier that is

Classifier

monotonically related to it.

Counts

Optimal classifier for distinguishing between M1 and
M2 (L

6000

can be expressed through classifier L .

M1/M2) 5000

1108 MeV

1122 MeV
o
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pvy  fors+(1—fo)pp  faLgp+(1— fa)’
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Classification

Neural Network output
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Classifier produced by training a
Multilayer Perceptron type
network on two sets of data, each
containing 50 000 events:

o (Green)-Signal +

Background Dataset

o (Red) - Background Dataset
Training of Neural Network and
classification performed
sequentially in 4 steps —
Improved Signal/Background ratio
improves classification efficiency
in each subsequent iteration




Classification

e C(lassifier produced by training a
Multilayer Perceptron type
network on two sets of data, each

Neural Network output o
containing 50 000 events:
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Confusion matrix, also known as an error matrix, is a
specific table layout that allows visualization of the
performance of an algorithm.

Possible combinations in binary classification:

Confusion matrix

Lambda invariant mass
(example cut on NN output)

Actual Value

(as confirmed by experiment)

positives negatives
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© o [ True False
s © i e
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K 8 w
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ROC curve

e A Receiver Operating Characteristic curve, or ROC curve,
_ , ' _ o ROC curve
is a graphical plot that illustrates the diagnostic ability of a

binary classifier system as its discrimination threshold is E :
0.9
varied. . 8;
e The ROC curve is created by plotting the true positive rate 0.75_
(TPR) against the false positive rate (FPR) at various o 65_
threshold settings. 5 55_
e True Positive Rate (signal efficiency): 0_45_
TP TP 03f-
TPR = = —1—FNR - Random
P TP+FN 02f- guessing
e False Positive Rate (misidentified background): 0‘15_
G 1 1 1 I 1 1 1 I 1 1 1 | 1 1 1 I 1 1 1 I
FP FP 0 0.2 0.4 0.6 0.8 FPF;
FPR = = =1-TNR
N FP +TN
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In statistical analysis of binary classification, the F-score or F-measure is a
measure of a test's accuracy. It is calculated from the precision and recall of
the test.

Precision is the number of correctly identified positive results divided by the
number of all positive results, including those not identified correctly.

True Positive

Precision = — —
True Positive+False Positive

Recall is the number of correctly identified positive results divided by the
number of all samples that should have been identified as positive.

True Positive

Recall = — ,
True Positive+False Negative

The F, score is the harmonic mean of the precision and recall. The more
generic F; score applies additional weights, valuing recall B times more than
precision.

precision - recall

Fs=(1+p8%)-
p=1+F) (32 - precision) + recall

relevant elements
I 1

false negatives true negatives

true positives = false positives

selected elements

How many selected How many relevant
items are relevant? items are selected?

Precision = —— Recall = ——

https://en.wikipedia.org/wiki/Precision_and recall

12
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e IneachstepF, score at
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classification is a bit more
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one.
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counts / (0.26 MeV/c?)
S N A o ®

o]

Background subtraction

Lambda Invariant Mass

4
t

2103 === e Events from outside signal range
e > > A were used as sideband to

;_ ; i approximate background

=3 - - underneath the Gaussian signal
E distribution.

- e Rescaling was applied based on

integrals from a polynomial

{
+
+
f
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function fitted to data (red line).
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Sigma Invariant Mass - Fitting

Fitting of relativistic Breit-Wigner distribution on top of
background (fifth degree polynomial), to the spectrum
achieved by sideband subtraction (cyan spectrum in
histogram), was performed.

2 212
s AR q mgL'§
Breit-Wigner o« — ;
g3 (m§ — m?)? +mgl?
3
m
I' =To Oq3 Fi(q),
mqgp
1+ (q@R)’
i W L

¢ - momentum

q,- momentum that corresponds to the mass m,,
m - mass variable,

I, - resonance width,

I' - mass-dependent resonance width,

F (q) - Blatt-Weisskopf parameter

R =1/197.327 MeV-" - centrifugal barrier parameter.

counts / (8.00 MeV/c?)

Sigma Invariant Mass

x1 03 h_Sig_fSigma_M_NN_0
- " Entries 208832
- % Mean 1440
ul +
- ra Std Dev 97.3
[ g (Magenta) - sideband rescaled
— -+
E i % (Cyan) - all data minus sideband
- I 4 (Blue) - Signal + Background fit
E i ++ (Green) - Signal (Breit-Wigner) fit
- + +++ (Red) - Background (polynomial) fit
= e
o + - e +.,_+
__ e . ++ +++
E ar e %10°
25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65
1 r 2
Miny__[MeV/c?]
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Inclusive and exclusive comparizon

Inclusive analysis Exclusive analysis
P >_<1 03 h_Subtracted_{Sigma_M_NN_0 T T I '
O 4 Entries 17774
> C ean
3 SGov o7l 300 $(1385)" » A +n" -
g E_ (Cyan) - all data minus sideband &:; - data
% 3; (Blue) - Signal + Background fit S — A non. res.
8 25F (Green) - Signal (Breit-Wigner) fit g 200 e s 20 non. res. —
- (Red) - Background (polynomial) fit o — misidentification
of \ e -~ Breit-Wigner
o h " —sum
“F 4 -
- < 1001 =
F . 3 E
1= 0o '
E + ; (& ]
E +
0.5:— . : 4. ” 3
H . Ol b bt | L Wx10° (1 ' — = —tyeed X 10
P25 73 135 14 145 15 155 16 165 1:3 1.4 1.9 1.6
MMV e M(A,7*)  [MeV/c?]
M, = 1382.96 + 0.59 MeV/c PDG (Particle Data Group): m, =1383.2 = 0.9 +i)51 MeV/c2
[, =32.7+1.9 MeV/c® M, = 1382.80 + 0.35 MeV/c? s
: 2
Yield = 15010 = 540 counts r,=36.0 £ 0.7 MeV/c? Fp =A0.2 :2.1 ;5 MeV/c

Agakishiev, Geydar et al. (2012). Baryonic resonances close to the K'N threshold: 1§
The case of £ (1385 )+ in pp collisions. Physical Review C. 85. 10.1103



counts / (0.12)
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Rapidity and Transverse Momentum

Sigma 1385 Rapidity
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counts / (125.00 MeV/c)
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Not yet acceptance and efficiency corrected!




A(1520)

A(1520) decay analysis <, o

-------

e A(1520) decay analysis has been performed by Krzysztof B v/

S - 2L s

Nowakowski in his PhD thesis: A(1520) '><:-,‘n Y

+ + o + S = ‘\ p -'

pp— PK'A(1520)— pK* A(1116)rT'TT— pK'prrTt'm

ROC curve

A(1116) reconstruction invariant mass 1-g,
o 80F 1 1 1 1 W
S5= [ M || -
glw | | I | c=4.5MeV 0.8/~
N 60 i '=0.0MeV L
B I : I I M;=1115.3 MeV 0.6
40l | | I 0.4
i | -
i + 0.2_—
20 +++ -

- ++++ %5 02 04 06 08 1

R T R AR G
1080 1100 1120 1140 1160 1180 1200 Krzystof Nowakowski, PhD Thesis, “Measuring A(1520) production in
w:_[MeV] proton-proton and proton-nucleus collisions with HADES detector”, 20221g



A(1520)

A( 15 20) decay anaIYSls V M/

pp— PK*A(1520)— pK* A(1116)T" T — pK*prrm' Md520) )<“
SV TN p
A(1520) reconstruction invariant mass
gE ;nd gE 2y Cross section vs excess energy
q .50_ 8 olub] Points (empty - exclusive,
full inclusive)
o 1000} ) o O
e B e . A(1405)
sof B e ° NA(1520) inclusive
100} e e /A(1520) exclusive
% 50 § ¢ L—*“'P_—!%— £ s Lines:
10F gat= e  A%incl. production
10+ ,;"' parametrization
0 50 /14 o A(1405)
.11+. L e L % production
1400 1500 1600 1700 1400 1500 1600 1700 il parametrization
jov : ' : : — e[GeV
Mpmes V] MV 00702 04 06 08 10 12 14 ooV
| Ma(1500)[MeV] | 05(1520)[MeV] 40.0
PDG 519,521 | notapplicable  Opp—A(1520)x = -1+ 1.1757, ub.
experiment 1504.5 +4.7 14.7 + 6.7 Koot Nowakowski. PhD Thois. U1 015200 prod
. s ‘ zystof Nowakowski, esis, “Measuring production in
simulation 1515.6 +2.1 11.3+3.6 proton-proton and proton-nucleus collisions with HADES detector”, 20221




Conclusions

e 2'(1385) channel has been
reconstructed and parameters of the
distribution have been calculated:

M, =1382.96 + 0.59 MeV/c?
I, =32.7+1.9 MeV/c?

e Analysis technique utilizing machine
learning methods has been
developed and verified as effective

for Z*(1385) and A(1520) analysis.

Outlook

Calculating value of cross-section for
this channel.

Performing analogous analysis for
>*(1385) and A(1520) channel
reconstruction in proton - proton
4.5 GeV scattering.

Expected increase of statistics by ~2
orders of magnitude due to larger
luminosity and cross-section in 4.5
GeV.
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