

Inclusive $\Sigma^+(1385)$ production in p+p 3.5 GeV

Konrad Sumara

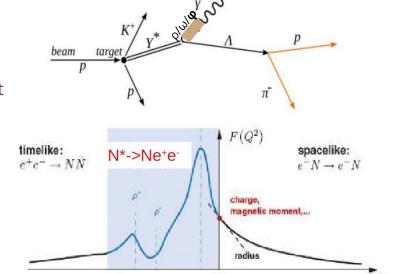
Jagiellonian University
Institute of Physics

Agenda

- 1. Motivation
- 2. Introduction to Σ^{+} (1385) analysis
- 3. HADES Experiment
- 4. Machine Learning methods and metrics introduction
- 5. **Λ(1115)** distribution reconstruction and background reduction
- 6. Reconstruction of Σ^{+} (1385) and background subtraction
- 7. Analysis of Σ^{+} (1385) signal distributions
- 8. Short presentation of $\Lambda(1520)$ decay analysis by Krzysztof Nowakowski
- 9. Conclusions and outlook

Hyperon radiative and Dalitz decay

- One of physics goals of pp 4.5 GeV proposal:
 - Provide insight into photon-hyperon coupling, including applicability of Vector Meson Dominance model.
 - Dalitz decays of $\Lambda(1520)/\Sigma(1385) \rightarrow \Lambda e^+e^-$ allow for first measurement of hyperon Form Factors in time-like region.
 - Production cross-sections of $\Lambda(1520)/\Sigma(1385)$ are not yet measured in pp and pA reactions at HADES energies.
 - Hadronic decays of $\Lambda(1520) \rightarrow \Lambda \pi^+ \pi^-$ and $\Sigma(1385) \rightarrow \Lambda \pi^+ \pi^-$ (large branching ratios) can be used for normalization for Dalitz decay studies.

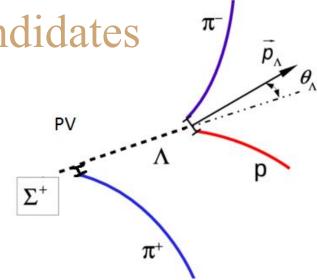


Expected dependence of FF for nucleon resonances (N*)

 $-4M^{2}$

Selection of $\Sigma^+(1385)$ candidates

- Reconstruction of Λ(1115) and reduction of background utilizing neural networks.
- Reconstruction of $\Lambda \pi^+$ signal
- Search for Σ^+ (1385) and background subtraction.
- Analysis of Σ^+ (1385) signal distributions:
 - Invariant mass
 - Transverse momentum
 - Rapidity



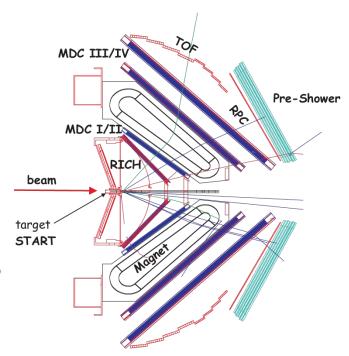
$$p + p \longrightarrow \Sigma^{+}(1385) + X$$

$$\downarrow \qquad \qquad \qquad \wedge (1115) + \pi^{+}$$

$$\downarrow \qquad \qquad \qquad \qquad p + \pi^{-}$$

HADES experiment in pp 3.5 GeV

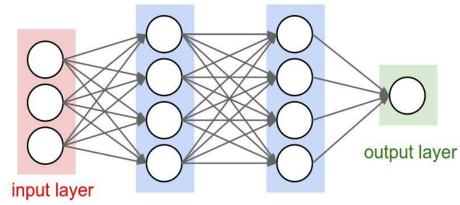
- High Acceptance Di-Electron Spectrometer (HADES)
 operating on a beam from the SIS18 synchrotron at the
 GSI research facility.
- The experiment uses a stationary target.
- Specialized in the detection of dileptons (e.g. electron-positron pair) and hadrons during heavy-ion collisions in the 1-4 GeV energy range.
- High angular acceptance: 18° 80° (now upgraded + 3° 7° with Forward Detector → details in Gabriela Perez talk) in polar angle and almost complete in azimuthal angle.



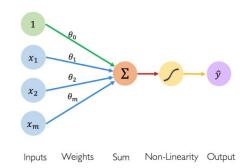
https://www-hades.gsi.de/

Artificial Neural Networks

- Artificial Neural Networks machine learning methods inspired by structure of biological neural networks present in human and animal brains.:
 - Training information presented in the form of examples.
 - Information gathered during training stores in the form of strength (weights)
 of connection between neurons in the network.
- Multilayer Perceptron (MLP) most commonly used class of feedforward artificial neural networks.



hidden layer 1 hidden layer 2

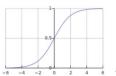


Activation Functions

$$\hat{y} = \mathbf{g} (\theta_0 + \mathbf{X}^T \boldsymbol{\theta})$$

Example: sigmoid function

$$g\left(z\right)=\sigma\left(z\right)=\frac{1}{1+e^{-z}}$$

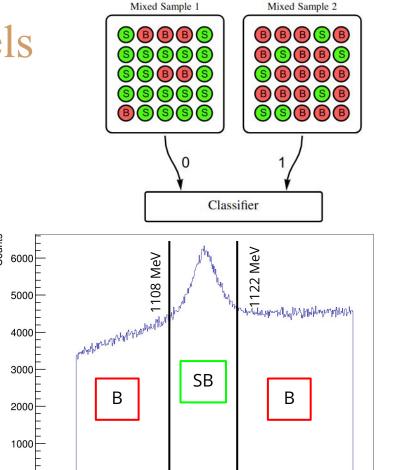


Classification without labels

- Neymann-Pearson Lemma: the optimal classifier is the ratio of probabilities of the event being signal and background respectively, or any classifier that is monotonically related to it.
- Optimal classifier for distinguishing between M1 and M2 ($L_{M1/M2}$) can be expressed through classifier $L_{S/B}$:

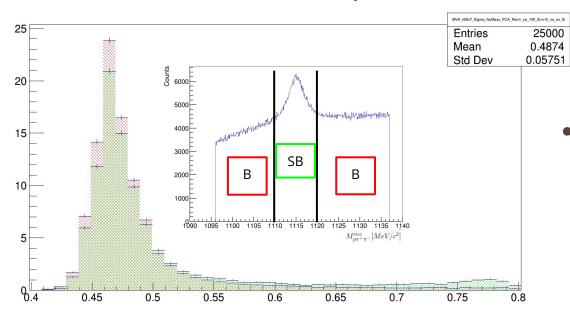
$$L_{M_1/M_2} = \frac{p_{M_1}}{p_{M_2}} = \frac{f_1 p_S + (1 - f_1) p_B}{f_2 p_S + (1 - f_2) p_B} = \frac{f_1 L_{S/B} + (1 - f_1)}{f_2 L_{S/B} + (1 - f_2)},$$

- Which is a monotonically increasing rescaling of the likelihood $L_{S/R}$ as long as f1 > f2.
- Therefore, $L_{S/B}$ and $L_{M1/M2}$ define the same classifier.



Classification

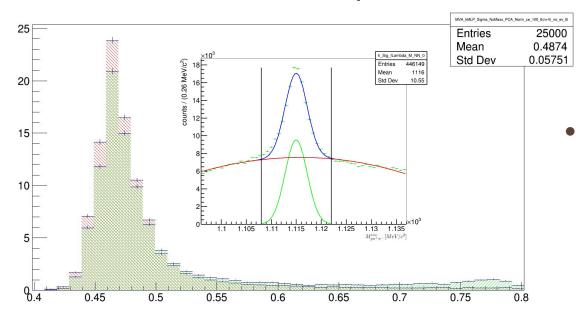
Neural Network output



- Classifier produced by training a Multilayer Perceptron type network on two sets of data, each containing 50 000 events:
 - (Green) Signal +Background Dataset
 - (Red) Background Dataset
- Training of Neural Network and classification performed sequentially in 4 steps → Improved Signal/Background ratio improves classification efficiency in each subsequent iteration

Classification

Neural Network output



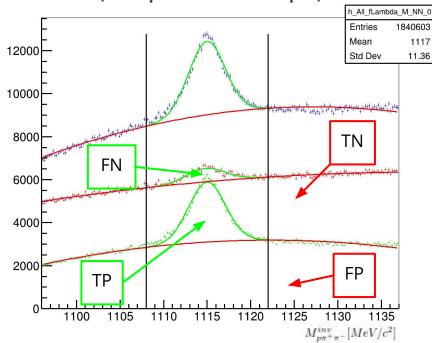
- Classifier produced by training a Multilayer Perceptron type network on two sets of data, each containing 50 000 events:
 - (Green) Signal +Background Dataset
 - o (Red) Background Dataset
- Training of Neural Network and classification performed sequentially in 4 steps → Improved Signal/Background ratio improves classification efficiency in each subsequent iteration

Confusion matrix

- Confusion matrix, also known as an error matrix, is a specific table layout that allows visualization of the performance of an algorithm.
- Possible combinations in binary classification:

		Actual Value (as confirmed by experiment)				
		positives			negatives	
Predicted Value (predicted by the test)	positives		TP True Positive		FP False Positive	
	negatives		FN False Negative		TN True Negative	

Lambda invariant mass (example cut on NN output)



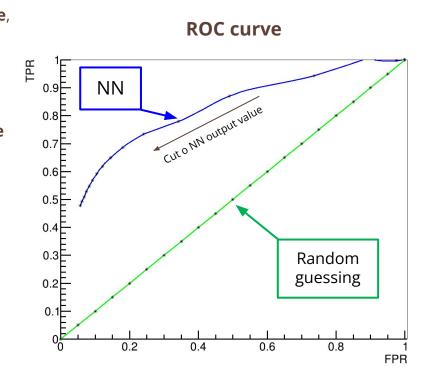
ROC curve

- A Receiver Operating Characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied.
- The ROC curve is created by plotting the true positive rate
 (TPR) against the false positive rate (FPR) at various
 threshold settings.
- True Positive Rate (signal efficiency):

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

False Positive Rate (misidentified background):

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN} = 1 - TNR$$



How to find best operating point?

- In statistical analysis of binary classification, the F-score or F-measure is a
 measure of a test's accuracy. It is calculated from the precision and recall of
 the test.
- **Precision** is the number of correctly identified positive results divided by the number of all positive results, including those not identified correctly.

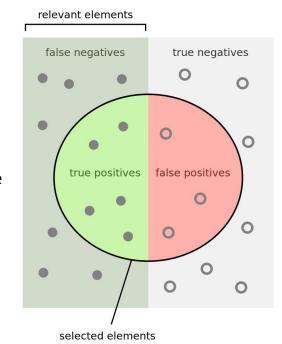
$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

• **Recall** is the number of correctly identified positive results divided by the number of all samples that should have been identified as positive.

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

• The $\mathbf{F_1}$ score is the harmonic mean of the **precision** and **recall**. The more generic $\mathbf{F_\beta}$ score applies additional weights, valuing recall $\boldsymbol{\beta}$ times more than precision.

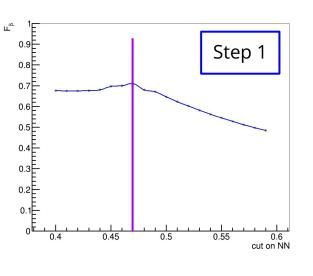
$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

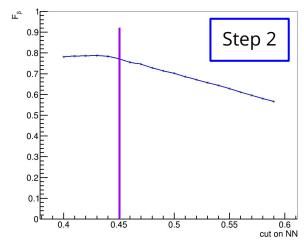


How many selected items are relevant?

How many relevant items are selected?

Recall =





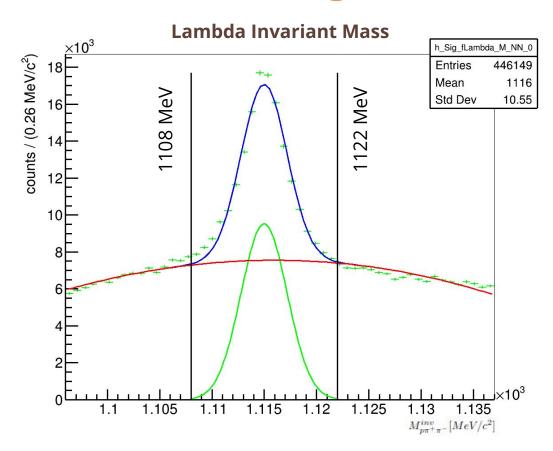


F_{3.5} score

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

- $F_{3.5}$ score plots for each step of the analysis.
- In each step F_{3.5} score at selected cut value has a bit higher value than in previous step → in each step classification is a bit more efficient than in previous one.

Background subtraction



- Events from outside signal range were used as sideband to approximate background underneath the Gaussian signal distribution.
- Rescaling was applied based on integrals from a polynomial function fitted to data (red line).

Sigma Invariant Mass - Fitting

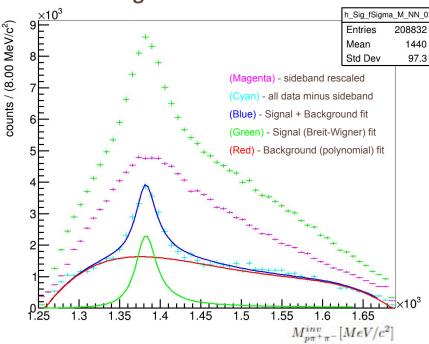
 Fitting of relativistic Breit-Wigner distribution on top of background (fifth degree polynomial), to the spectrum achieved by sideband subtraction (cyan spectrum in histogram), was performed.

Breit-Wigner
$$\propto \frac{q^2}{q_0^2} \frac{m_0^2 \Gamma_0^2}{(m_0^2 - m^2)^2 + m_0^2 \Gamma^2},$$

$$\Gamma = \Gamma_0 \frac{m_0 q^3}{m q_0^3} F_1(q),$$

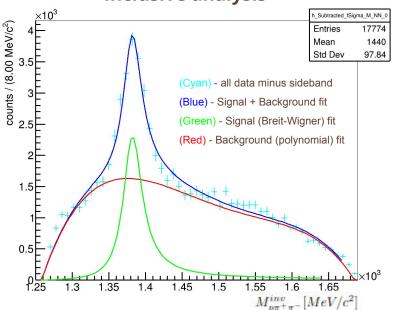
$$F_1(q) = \frac{1 + (q_0 R)^2}{1 + (q R)^2},$$

- ullet q momentum
- ullet $q_{ heta}$ momentum that corresponds to the mass m_{0} ,
- m mass variable,
- Γ_a resonance width,
- Γ mass-dependent resonance width,
- $F_{\eta}(q)$ Blatt-Weisskopf parameter
- $R = 1/197.327 \text{ MeV}^{-1}$ centrifugal barrier parameter.



Inclusive and exclusive comparizon

Inclusive analysis



$M_0 = 1382.96 \pm 0.59 \text{ MeV/c}^2$

$$\Gamma_0 = 32.7 \pm 1.9 \text{ MeV/c}^2$$

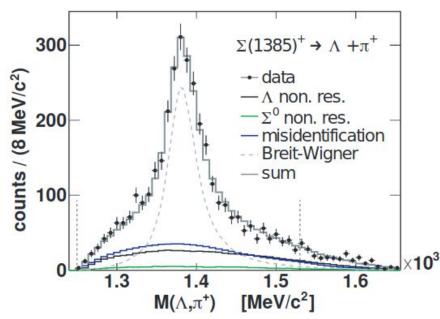
 $Yield = 15010 \pm 540 counts$

PDG (Particle Data Group):

 $M_0 = 1382.80 \pm 0.35 \text{ MeV/c}^2$

 $\Gamma_0 = 36.0 \pm 0.7 \text{ MeV/c}^2$

Exclusive analysis



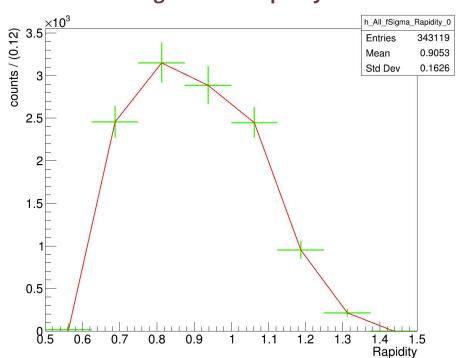
$$m_0 = 1383.2 \pm 0.9^{+0.1}_{-1.5} \text{ MeV/c}^2$$

$$\Gamma_0 = 40.2 \pm 2.1^{+1.2}_{-2.8} \text{ MeV/c}^2$$

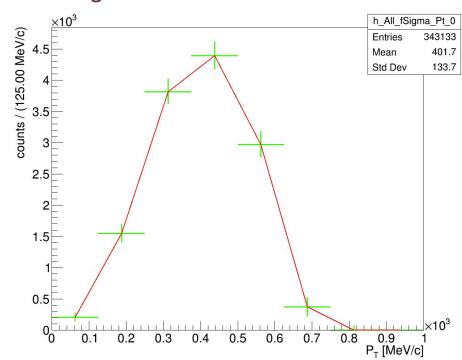
Agakishiev, Geydar et al. (2012). Baryonic resonances close to the K-N threshold: 16 The case of Σ (1385)+ in pp collisions. Physical Review C. 85. 10.1103

Rapidity and Transverse Momentum

Sigma 1385 Rapidity



Sigma 1385 Transverse Momentum

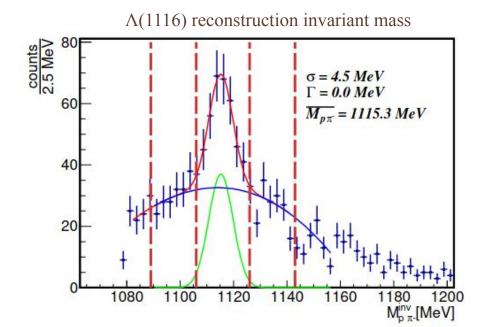


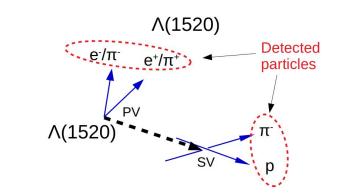
Not yet acceptance and efficiency corrected!

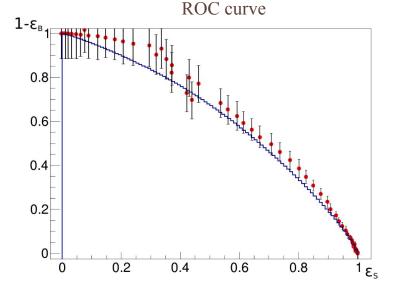
$\Lambda(1520)$ decay analysis

Λ(1520) decay analysis has been performed by Krzysztof
 Nowakowski in his PhD thesis:

$$pp \rightarrow pK^{+}\Lambda(1520) \rightarrow pK^{+}\Lambda(1116)\pi^{+}\pi^{-} \rightarrow pK^{+}p\pi^{-}\pi^{+}\pi^{-}$$



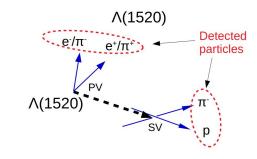




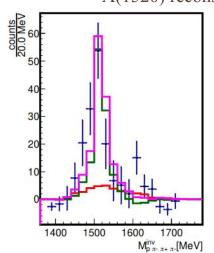
Krzystof Nowakowski, PhD Thesis, "Measuring $\Lambda(1520)$ production in proton-proton and proton-nucleus collisions with HADES detector", 2022₁₈

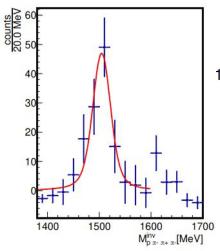
$\Lambda(1520)$ decay analysis

 $pp \rightarrow pK^{+}\Lambda(1520) \rightarrow pK^{+}\Lambda(1116)\pi^{+}\pi^{-} \rightarrow pK^{+}p\pi^{-}\pi^{+}\pi^{-}$



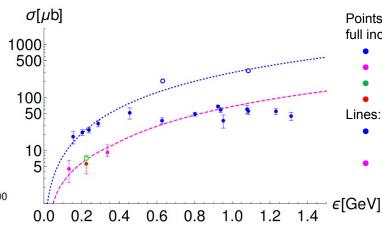
 $\Lambda(1520)$ reconstruction invariant mass





	$M_{\Lambda(1520)}[{ m MeV}]$	$\sigma_{\Lambda(1520)}[{ m MeV}]$
PDG	$1519, 5 \pm 1$	not applicable
experiment	1504.5 ± 4.7	14.7 ± 6.7
simulation	1515.6 ± 2.1	11.3 ± 3.6

Cross section vs excess energy



Points (empty - exclusive, full inclusive)

- V_0
- $\Lambda(1405)$
- $\Lambda(1520)$ inclusive
 - Λ(1520) exclusive
- Lines:
 - Λ^0 incl. production parametrization
 - $\Lambda(1405)$ production parametrization

$$\sigma_{\text{pp}\to\Lambda(1520)X} = 7.1 \pm 1.1^{+0.0}_{-2.14} \,\mu\text{b}.$$

Krzystof Nowakowski, PhD Thesis, "Measuring Λ(1520) production in proton-proton and proton-nucleus collisions with HADES detector", 202210

Conclusions

 Σ⁺(1385) channel has been reconstructed and parameters of the distribution have been calculated:

$$M_0 = 1382.96 \pm 0.59 \text{ MeV/c}^2$$

 $\Gamma_0 = 32.7 \pm 1.9 \text{ MeV/c}^2$

 Analysis technique utilizing machine learning methods has been developed and verified as effective for Σ⁺(1385) and Λ(1520) analysis.

Outlook

- Calculating value of cross-section for this channel.
- Performing analogous analysis for Σ⁺(1385) and Λ(1520) channel reconstruction in proton proton
 4.5 GeV scattering.
- Expected increase of statistics by ~2 orders of magnitude due to larger luminosity and cross-section in 4.5 GeV.