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ARTIS radiative transfer code

▪ARTIS is a 3D-capable Monte Carlo radiative transfer code 
(method of Lucy 2002)

▪Radioactive decay energy release over simulation period is 
discretised into packets at simulation start

▪Pellets of radioactive energy co-move with the ejecta until 
a decay, then can make several state transitions according 
to energy flows until a photon packet exits the simulation 
volume (contributing to the synthetic spectra and light 
curve).

▪Simulations always follow a time evolution with light travel 
time accounted for (no single-time snapshots like 
CMFGEN, TARDIS).

2

Time-dependent 3D spectrum ‘synthesis for SNe’ 1811

Figure 1. Flow chart outlining the mode of operation of the code. For discussion, see the text.

We then follow the expansion of the ejecta for N time-steps up
to time tN by expanding the individual grid cells continuously. The
time-steps (tn, tn+1) are spaced logarithmically and thermodynamic
quantities in a cell such as densities, temperatures and atom/ion
populations are kept fixed during a time-step n at the value they
have for tn+0.5.

2.1.2 Energy deposition

SNe Ia light curves are primarily powered by the radioactive decays
of 56Ni→56Co and 56Co→56Fe (Truran, Arnett & Cameron 1967;
Colgate & McKee 1969) giving rise to the emission of a spectrum of
γ -photons associated with their transitions (Ambwani & Sutherland
1988). Out of the total energies, ENi and ECo emitted per decay of
56Ni and 56Co, we determine the total γ -ray energy emitted in the
decay chain for t → ∞

Etot = (ENi + ECo)MNi/mNi, (1)

where MNi is the initial mass of 56Ni synthesized in the explosion
and mNi the mass of the 56Ni atom.

Following Lucy (2005), this energy is quantized intoN = Etot/ε0

identical energy packets of cmf energy ε0 which we call ‘pellets’ in
the following. These pellets are distributed on the grid according to
the initial 56Ni distribution and follow the homologous expansion
until they decay. Decay times are sampled randomly according to the
56Ni→56Co→56Fe decay chain with pellets assigned to represent
either the 56Ni or 56Co decay.

Upon decay, a pellet transforms to a single γ -packet representing
a bundle of monochromatic γ -radiation with cmf energy ε0 and a
cmf photon energy E′

γ which is randomly sampled from the γ -lines
in the appropriate decay of the sequence 56Ni→56Co →56Fe. The
γ -packet’s direction (µ′) in the cmf is sampled randomly assuming
isotropic emission.

2.1.3 Propagation of γ -packets

The γ -packets are propagated through the ejecta in the rf of the
grid until either (i) they leave the grid, (ii) the current time-step
finishes or (iii) they interact with matter. Computing the distances
to all possible events along the packet trajectory, we select the event
which is reached first (see Lucy 2005 for details). In the first case,
the γ -packet is flagged inactive and the calculation proceeds to the

next active packet. In the second case, we save the rf data string (r ,
t , µ, ε, Eγ ) for the following time-step and continue with the next
active packet.

For the third case, we consider the Compton scattering by free
and bound electrons, photoelectric absorption and pair production
as possible physical processes, the last being only available for
γ -packets with energy E > 2mec

2. For details, see again Lucy
(2005) and equation (1) of Sim & Mazzali (2008) for the adopted
photoabsorption cross-section. Which of the processes happens is
determined randomly according to their absorption and scattering
coefficients.

In the case of a photoelectric absorption, the γ -packet energy
is deposited as thermal kinetic energy. In the framework of this
code, this is described by a transformation of the γ -packet into a
so-called k-packet of equal cmf energy. The treatment of k-packets
is described in Section 2.1.4.

As our energy packets are indivisible, the treatment of Compton
scattering and pair production, where the photon energy is dis-
tributed to two particles, are slightly more complex. Following
again Lucy (2005), in Compton scattering the γ -packet is either
scattered and continues as a γ -packet of the same cmf energy as the
incident packet or it is transformed into a non-thermal e −-packet.
e−-packets are assumed to thermalize and are instantaneously trans-
formed into k-packets. For pair production, we either create e+- or
e−-packets. Assuming in situ annihilation, for an incident γ -packet
of cmf photon energy E′

γ a fraction of 2mec
2/E′

γ (represented by
the e+-packets) is released in form of γ -rays at 0.511 MeV when
the positron annihilates. The remainder (representing the kinetic
energy of the electrons and positrons) goes directly to the thermal
pool.

2.1.4 Treatment of thermal kinetic energy

Neglecting energy storage in the ejecta gas, thermal kinetic energy
converts instantaneously (i.e. without propagating) into ultraviolet–
optical–infrared (UVOIR) radiation. This happens either directly
via continuum emission by free–free or free–bound processes or
indirectly by collisional excitations/ionizations of the gas and sub-
sequent radiative deexcitations/recombinations. In our framework,
this means transforming a k-packet either into an r-packet – repre-
senting a monochromatic energy packet of UVOIR radiation (for
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Non-thermal particle deposition
▪With a continuous source of high-energy decay particles that don’t 

thermalise efficiently, the energy distribution stays non-Maxwellian

▪ e.g., Type Ia supernovae at late times: positrons from Co56 decay 
and electrons Compton-scattered by gamma rays

▪We obtain the non-thermal electron distribution by numerically 
solving the Spencer & Fano (1954) equation using the method of 
Kozma & Fransson (1992)

▪SF equation accounts for sources and sinks due to energy 
deposition, heating (Coulomb scattering), excitation, and ionisation.

▪Similar to Li, Hillier, & Dessart (2012) for CMFGEN, using impact 
ionisation cross sections from Arnaud & Rothenflug (1985) and 
Arnaud & Raymond (1992).

▪Rates for non-thermal ionisation, excitation, and heating obtain by  
integrating over the energy distribution
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(8)

where summation runs over ions (i), energy levels ( j and k), and
electron shells (m), nj is the population density of level j, E j!k and
�exc, j!k are the energy di↵erence and cross section of the excita-
tion transition from level j to k, Ni is the population density of ion
i, �ion,m, and Im are impact ionisation cross section and ionisation
potential of electron shell m, Le is the loss function for Coulomb
interactions with thermal electrons (which we calculate identically
to Kozma & Fransson 1992), and Emax is the maximum energy up
to which the solution is defined. The solution to Equation (8) is the
energy degradation function y(E) = df/dE, where f is the elec-
tron number flux. Thus, y is a distribution function for the flux of
non-thermal particles.

Similar to Li et al. (2012), we use the electron-impact ionisa-
tion cross section (Qion,m) fitting formula of Younger (1981), with
data from Arnaud & Rothenflug (1985) and Arnaud & Raymond
(1992). To obtain the di↵erential cross sections, we estimate the
energy distribution of ejected electrons with the formula by Opal
et al. (1971),

P(Ep, Es) =
1

J arctan[(Ep � Im)/2Jm]
1

1 + (Es/Jm)2 , (9)

where Im is the ionisation potential of shell m, Ep and Es are the
energies of the primary and secondary electrons, and Jm is a fitting
parameter that acts as a cut-o↵ energy for secondary electrons. We
use Jm = 15.8 eV for He i, Jm = 24.2 eV for Ne i, and Jm = 10.0
eV for Ar i, as measured by Opal et al. (1971). For all other ions we
use Jm = 0.6Im.

The di↵erential cross section is then

�ion,m(E, ✏) = Qion,m(E)P(E, ✏ � Ii), (10)

where �ion,m is the total cross section, and ✏ is the kinetic energy of
the secondary electron.

We treat excitation of bound electrons by non-thermal col-
lisions only for permitted transitions. The cross section for non-
thermal excitation is calculated from the van Regemorter (1962)
approximation and a Gaunt factor estimated from the first two terms
of the fitting formula given in Equation 5 of Mewe (1972).

The solution to Equation (8) at energy E only depends on
quantities evaluated at energies between E and Emax. This means
that when we discretise the integrals, the resulting set of linear
equations forms an upper-triangular matrix that is easily solved on
a computer. The solution vector then contains the electron degrada-
tion spectrum y evaluated on our grid of energy points.

2.6 Non-thermal ionisation rates

With a known electron degradation spectrum, the fraction of de-
position energy going into ionisation of electron shell s of ion i is
obtained from

⌘s =
NiIs

Einit

Z Emax

Is

�s(E)y(E) dE, (11)

where Is and �s are the ionisation potential and impact ionisation
cross sections of shell s.

The non-thermal ionisation rate of ion i is given by

�iNi =
Ni✏dep

Einit

X

s

Z Emax

Is

�s(E)y(E) dE. (12)

When a non-thermal electron impact frees an electron from
an inner shell, the relaxation of the resulting ion can eject further
bound electrons (the Auger e↵ect). In our standard artis models,
we use the probabilities of ejecting one or two Auger electrons
given by Kaastra & Mewe (1993) to calculate rates of double-
and triple-ionisation in the non-LTE population/ionisation solver4.
Specifically, we include Auger e↵ect probabilities for Fe0+ – Fe2+,
Co+, Co2+, Ni+ and Ni2+. Note, however, that we do not currently
follow the subsequent ionisation/heating due to the ejected Auger
electrons or photons produced in the refilling of inner shells.

3 VERIFICATION OF METHOD

In this section, we present the results of several calculations made
to test and demonstrate the newly implemented code features.

We first show the results of an idealised test of the non-thermal
solver (Section 3.1) in which only a single element is included.
We then (Section 3.2) present and discuss a full spectrum synthe-
sis calculation for the well-known W7 model (Nomoto et al. 1984;
Iwamoto et al. 1999).

3.1 Non-thermal solver

To verify our implementation of the Spencer-Fano solver, we cal-
culate the electron degradation function for a pure-O plasma with
the same ionisation fraction (0.01) and free electron density (108

cm�3) as Kozma & Fransson (1992). The degradation function is
shown in Figure 1, with a digitised version of the degradation func-
tion in figure 1 of Kozma & Fransson (1992) for comparison. We
find close agreement, with a small di↵erence that is likely due to
di↵erences in the chosen source function, i.e. the distribution of
energies at which we inject the non-thermal energy.

3.2 W7 calculation

To more fully test the nebular phase capabilities of the code, we
have carried out test calculations for the nebular spectrum at 330
days (post explosion) for the W7 model of Nomoto et al. (1984)
with the nucleosynthesis of Iwamoto et al. (1999). The W7 model is
derived from a 1D simulation of the deflagration of a Mch C-O WD
with the deflagration speed having been chosen to yield an over-
all good level of agreement with the known properties of normal

4 I.e., in the solver, the ionization rate is used to connect the target ion to the
ground states of the species with one degree higher ionization (rate propor-
tional to probability of no Auger electron), two degrees higher (proportional
to rate for one Auger electron, etc.)

MNRAS 000, 1–15 (2018)

Test with 99% O0, 1% O+
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Importance of non-thermal ionisation

▪Matching observed ionisation state is a major challenge for 
Type Ia supernovae models > ~100 days

▪Sub-Chandrasekhar-mass models are too highly ionised with 
detailed non-thermal ionisation (Wilk+ 2018, Shingles+ 2020)

▪Wilk et al. (2018, 2020) suggest ejecta clumping boosts 
recombination rate

▪We tested reduction of non-thermal ionisation rates by 
boosting thermal losses (Shingles+ 2022)

▪Relevance to kilonovae: Pognan+ 2022 estimate that as early 
at three days after merger, non-thermal ionisation > collisional 
and photoionisation for non-neutral species. 

• Used a similar Spencer-Fano solver and approximate cross 
sections (no impact ion. data available for Lanthanides?)
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ARTIS developments

▪ARTIS now has a non-thermal solver, non-LTE level populations, binned radiation field and detailed 
photoionisation rate estimators (Shingles et al. 2020)

▪ARTIS originally followed just a few decay chains relevant to Type Ias (e.g., Ni56->Co56->Fe56) beta-
plus and electron-capture only.

▪Now includes decays in a more generalised way

• Models here include 2591 nuclides with alpha and beta-minus decays from ENDF/B-VII.1 
(Chadwick+ 2011 via Hotokezaka’s data file public on GitHub)

• Abundance calculation from Bateman equation summed over all ancestor paths. No loops allowed 
(e.g. no n or p-capture reactions)

• Gamma-ray decay spectra from NNDC and full transport

• Particle emission using average kinetic energy per decay

• local but non-instantaneous deposition (assumed to be fully trapped)

5
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Synthetic spectra and light curves from merger models

▪Model of dynamical ejecta density by Vimal Vijayan (SFHO EoS including neutrinos for the mass 
1.35-1.35 Msun, ejecta mass: 0.004 Msun, see Vimal’s talk)

▪Density structure combined with r-process abundances from detailed nuclear network calculation at 
0.01 days (Martínez-Pinedo)

▪Currently, 1D spherical average is used for fast prototyping (but 2D/3D is planned)

▪ARTIS follows simple density (homologous) and abundance evolution (decays) while calculating 
radiative transfer

▪For now, I test with Tanaka+ 2020 grey opacity vs Ye (same as Collins model)

• Future: line-by-line Sobolev opacity with element/ion composition and NLTE level populations

6
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Radioactive decay power ARTIS vs full network

7

Good tracking of 
decay power

Fission not included,

but contribution is small
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Abundance evolution ARTIS vs full network
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Thermalisation results and Barnes+ (2016) approximation

•Deposition time from average particle energy per 
nuclear decay and approximate loss rate (4e10*⍴/(g 
cm-3) [MeV/s] for beta, 5e11*⍴/(g cm-3) for alpha) particle 
deposition occurs after emission, but in the same 
location.

• Deposition is local (no escape). Assumed to be trapped 
by magnetic fields.

• (preliminary) Right: compare this to the Barnes+16 
analytical approximation (one-zone sphere and typical 
beta, alpha energy of 1, 5 MeV/decay)

9

4.1. Analytic Estimates of Thermalization Timescales

The net thermalization of the energy from the radioactive
decay of r-process material depends on the relative importance
of each decay channel and on how efficiently the decay
products thermalize in the ejecta. Energy-loss rates depend on
the density of the medium, so thermalization is also a function
of Mej and vej. If we approximate the ejecta as a uniform density
sphere of mass Mej and kinetic energy =E M v 2k ej ej

2 , the
density is

r » ´ - - - -t M v t7.9 10 g cm , 1515
5 2

3
d

3 3( ) ( )
where again, = ´ -

M M M5.0 105 ej
3 and =v v c0.22 ej .

Thermalization becomes inefficient at a time, tineff, when the
timescale for a particle to thermalize becomes similar to the
ejecta expansion timescale, texp. The inefficiency time can be
compared to the peak of the kilonova light curve,

⎛
⎝⎜

⎞
⎠⎟

k
~ -t A

M

v c
M v4.3 days, 16peak

ej

ej

1 2

5
1 2

2
1 2 ( )

where κ is the opacity for optical/infrared light (we take
κ=10cm2g−1, appropriate for an r-process medium), and
A=0.32 is a scaling factor we estimate from kilonova
radiation transport simulations (e.g., Barnes & Kasen 2013).
If tineff<tpeak, thermalization will impact the kilonova light
curve significantly.

g-rays: γ-rays stop thermalizing efficiently when they can
escape the ejecta without undergoing any scatters or absorp-
tions. This occurs when the optical depth t rk» gRej falls
below unity. For g-rays with energies gE 1 MeV, the
relevant opacity is the Compton opacity, κC≈5×10−2 cm2

g−1 while the photoionization opacity, κPI  1 cm2 g−1,
dominates for lower energy photons. The ejecta becomes
transparent (τ< 1) to g-rays at a time
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
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0.5 days for 1MeV
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1
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In both cases, inefficiency sets in before the kilonova light
curve peaks,
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⎨
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( )

b-particles: The energy-loss rate for b-particles, modulo
mass density, has a fairly constant value

r´b
-E 4 10 MeV s10 1˙ over a broad range of energies

(see Figure 6). The thermalization time for b-particles is
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th
,0

,0

,0
10 1

,0
5

1
2
3

d
3

˙

( )

where bE ,0 is the initial b-particle energy.
Beta particles trapped in the ejecta fail to efficiently

thermalize when tth texp, which occurs at
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For a typical initial energy, tineff is comparable to the rise time
of the light curve,
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If the magnetic field is radial or only slightly tangled,
b-particles can escape the ejecta before they thermalize, and
escape will significantly reduce the thermalization efficiency.
The escape time is

l b



t

R t

v
, 22esc

ej

,

( ) ( )

where λRej is the coherence length of the magnetic field, b v , is
the component of the b-particle velocity parallel to the field
lines, and we have modeled the b’s motion in a random field as
a random walk of step size lRej. For a b-particle with

=bE 0.5 MeV,0 and pitch angle 1 ( =b bv v, ), tesc is less than tth
when


l

-

t
M v3.5

days. 235
1 2

2
1

1 2
( )

For radial fields (λ= 1), this is less than tpeak, so escape is
important for b-particle thermalization. In contrast, for
disordered fields there is a degree of randomness above which
b-particle escape cannot significantly impact the light curve.
This limit is defined by the condition tth(tpeak)<tesc(tpeak).
Again considering a 0.5 MeV b-particle, we find

l<  -t t t t v0.8 . 24th peak esc peak 2
1( ) ( ) ( )

Thus, high-energy b-particles are effectively trapped by even a
slightly tangled magnetic field.
α-particles and fission fragments: Fission fragments and

a-particles are emitted with greater energies than b-particles
( a E 6 MeV;,0 Eff,0 ; 100 MeV), but have higher energy-loss
rates ( r~ ´a aE E 5 10,0

11˙ ( ) MeV s−1; ~E Eff ff,0˙ ( )
r´5 1013 MeV s−1). The efficiency of a-particle therma-

lization is similar to that of b particles, while fission fragments
thermalize efficiently out to very late times:
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Unlike b-particles, both a’s and fission fragments have
velocities much lower than vej, and so in general cannot escape
the ejecta. However, because these particles are propagating
through a steep velocity gradient, their speed relative to the
background gas continually decreases. This reduces the kinetic
energy of the particles as measured in the co-moving frame.
Because the particles have a spiraling motion about magnetic
field lines, their motion is never completely frozen out in the
fluid frame. Still, these “frame-to-frame” effects can reduce
thermalization by 15%.

4.2. Summary of Thermalization Timescales

While low-energy b-particles, a-particles, and especially
fission fragments typically thermalize efficiently at t=tpeak,
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the thermalization at peak of high-energy b-particles and
g-rays is not robust. Figure 8 plots the ratio of the
thermalization time to the light curve peak for all particles as
a function of initial energy for a range of vej. For a- and
b-particles, we calculated tineff/tpeak from Equations (25) and
(21). The g-ray curve was calculated from Equation (18) for

gE 200 keV, (18) for gE 1 MeV, and a simple linear
interpolation for intermediate gE . For fission fragments, we
modified Equation (25) slightly to account for the positive
slope of Eff˙ in the range Eff=100–150MeV. This renders Eff˙
approximately constant, so the fission fragment curve is
essentially flat.

4.3. Analytic Thermalization Model

We develop an analytic expression for time-dependent
thermalization efficiencies of massive particles under the
following assumptions: first, that the radioactive energy-
generation rate evolves as h-t with h = 1.0 (close to the
expected values h = 1.1 1.4– ); second, that the density in the
ejecta is spatially uniform; third, that energy-loss rates are
independent of particle energy, and depend only on ρ; and
fourth, that all particles of a given type are emitted at a single
energy E0. Despite these simplifications, we find our model
agrees fairly well with the detailed numerical calculations to be
presented in Section 5.

The thermalization efficiency is defined as the ratio of energy
emitted by radioactive processes to energy absorbed by the
ejecta at any time t,

=f t
E t
E t

. 26th

rad
( )

˙ ( )
˙ ( )

( )

We approximate the radioactive energy-generation rate by
=E t trad 0 0˙ ˙ ( ) with  = M100

11
ej˙ ergs s−1 and =t 10 day.

Assuming charged particle thermalization depends only on
mass density (which declines like -t 3 in a homologous flow),

the energy loss is
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, 27part 0
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3
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where r0 is the density at t0, and ψ is a scaling factor such that
yr = E t0 part 0˙ ( ), which will be unique to each particle type. The
rate at which energy is thermalized, E tth˙ ( ), is given by the
number of live particles N multiplied by the rate at which they
lose energy,
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At any time t, the oldest live particle originates from an earlier
time ti, defined by
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which is satisfied by
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The number of live particles at time t is then
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where tineff is the inefficiency timescale defined in the previous
section.
It is now straightforward to calculate the ratio fp of

thermalized to emitted energy for a massive particle of type p,
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Equation (32) can be used to estimate the thermalization
efficiencies of massive particles, where the relevant timescales
tineff,p are given by Equations (21) (b-particles), (25)
(a-particles), and (25) (fission fragments).
For g-rays, the thermalization efficiency is approximately

equal to the interaction probability: » -g
t-f t e1 .( ) We can

estimate the optical depth t rk» gRej using kg¯ , the g-ray
opacity averaged over the emission spectrum. Optical depth is
related to gtineff, by
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Figure 9 shows our analytic thermalization functions for
= ´ -

M M5 10ej
3 , and =v c0.2ej , using the expressions for

tineff derived in Section 3. For massive particles, we used

Figure 8. Ratio tineff/tpeak for all particles, for vej in the range 0.1c–0.3c. Fission
fragments, and to a lesser extent a-particles and low-energy b -particles,
thermalize efficiently out to late times. Higher energy b’s and g -rays are
expected to become inefficient on kilonova timescales. The width of the curves
is due to the range of vej considered, since tineff/tpeak varies inversely with vej.
Curves for the fiducial velocity vej=0.2c are overplotted in dotted black lines.
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4.1. Analytic Estimates of Thermalization Timescales

The net thermalization of the energy from the radioactive
decay of r-process material depends on the relative importance
of each decay channel and on how efficiently the decay
products thermalize in the ejecta. Energy-loss rates depend on
the density of the medium, so thermalization is also a function
of Mej and vej. If we approximate the ejecta as a uniform density
sphere of mass Mej and kinetic energy =E M v 2k ej ej

2 , the
density is

r » ´ - - - -t M v t7.9 10 g cm , 1515
5 2

3
d

3 3( ) ( )
where again, = ´ -

M M M5.0 105 ej
3 and =v v c0.22 ej .

Thermalization becomes inefficient at a time, tineff, when the
timescale for a particle to thermalize becomes similar to the
ejecta expansion timescale, texp. The inefficiency time can be
compared to the peak of the kilonova light curve,
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1 2

5
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where κ is the opacity for optical/infrared light (we take
κ=10cm2g−1, appropriate for an r-process medium), and
A=0.32 is a scaling factor we estimate from kilonova
radiation transport simulations (e.g., Barnes & Kasen 2013).
If tineff<tpeak, thermalization will impact the kilonova light
curve significantly.

g-rays: γ-rays stop thermalizing efficiently when they can
escape the ejecta without undergoing any scatters or absorp-
tions. This occurs when the optical depth t rk» gRej falls
below unity. For g-rays with energies gE 1 MeV, the
relevant opacity is the Compton opacity, κC≈5×10−2 cm2

g−1 while the photoionization opacity, κPI  1 cm2 g−1,
dominates for lower energy photons. The ejecta becomes
transparent (τ< 1) to g-rays at a time
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In both cases, inefficiency sets in before the kilonova light
curve peaks,
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b-particles: The energy-loss rate for b-particles, modulo
mass density, has a fairly constant value

r´b
-E 4 10 MeV s10 1˙ over a broad range of energies

(see Figure 6). The thermalization time for b-particles is
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where bE ,0 is the initial b-particle energy.
Beta particles trapped in the ejecta fail to efficiently

thermalize when tth texp, which occurs at
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For a typical initial energy, tineff is comparable to the rise time
of the light curve,
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If the magnetic field is radial or only slightly tangled,
b-particles can escape the ejecta before they thermalize, and
escape will significantly reduce the thermalization efficiency.
The escape time is

l b



t

R t

v
, 22esc

ej

,
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where λRej is the coherence length of the magnetic field, b v , is
the component of the b-particle velocity parallel to the field
lines, and we have modeled the b’s motion in a random field as
a random walk of step size lRej. For a b-particle with

=bE 0.5 MeV,0 and pitch angle 1 ( =b bv v, ), tesc is less than tth
when


l
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t
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days. 235
1 2

2
1
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For radial fields (λ= 1), this is less than tpeak, so escape is
important for b-particle thermalization. In contrast, for
disordered fields there is a degree of randomness above which
b-particle escape cannot significantly impact the light curve.
This limit is defined by the condition tth(tpeak)<tesc(tpeak).
Again considering a 0.5 MeV b-particle, we find

l<  -t t t t v0.8 . 24th peak esc peak 2
1( ) ( ) ( )

Thus, high-energy b-particles are effectively trapped by even a
slightly tangled magnetic field.
α-particles and fission fragments: Fission fragments and

a-particles are emitted with greater energies than b-particles
( a E 6 MeV;,0 Eff,0 ; 100 MeV), but have higher energy-loss
rates ( r~ ´a aE E 5 10,0

11˙ ( ) MeV s−1; ~E Eff ff,0˙ ( )
r´5 1013 MeV s−1). The efficiency of a-particle therma-

lization is similar to that of b particles, while fission fragments
thermalize efficiently out to very late times:
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Unlike b-particles, both a’s and fission fragments have
velocities much lower than vej, and so in general cannot escape
the ejecta. However, because these particles are propagating
through a steep velocity gradient, their speed relative to the
background gas continually decreases. This reduces the kinetic
energy of the particles as measured in the co-moving frame.
Because the particles have a spiraling motion about magnetic
field lines, their motion is never completely frozen out in the
fluid frame. Still, these “frame-to-frame” effects can reduce
thermalization by 15%.

4.2. Summary of Thermalization Timescales

While low-energy b-particles, a-particles, and especially
fission fragments typically thermalize efficiently at t=tpeak,
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the thermalization at peak of high-energy b-particles and
g-rays is not robust. Figure 8 plots the ratio of the
thermalization time to the light curve peak for all particles as
a function of initial energy for a range of vej. For a- and
b-particles, we calculated tineff/tpeak from Equations (25) and
(21). The g-ray curve was calculated from Equation (18) for

gE 200 keV, (18) for gE 1 MeV, and a simple linear
interpolation for intermediate gE . For fission fragments, we
modified Equation (25) slightly to account for the positive
slope of Eff˙ in the range Eff=100–150MeV. This renders Eff˙
approximately constant, so the fission fragment curve is
essentially flat.

4.3. Analytic Thermalization Model

We develop an analytic expression for time-dependent
thermalization efficiencies of massive particles under the
following assumptions: first, that the radioactive energy-
generation rate evolves as h-t with h = 1.0 (close to the
expected values h = 1.1 1.4– ); second, that the density in the
ejecta is spatially uniform; third, that energy-loss rates are
independent of particle energy, and depend only on ρ; and
fourth, that all particles of a given type are emitted at a single
energy E0. Despite these simplifications, we find our model
agrees fairly well with the detailed numerical calculations to be
presented in Section 5.

The thermalization efficiency is defined as the ratio of energy
emitted by radioactive processes to energy absorbed by the
ejecta at any time t,

=f t
E t
E t

. 26th

rad
( )

˙ ( )
˙ ( )

( )

We approximate the radioactive energy-generation rate by
=E t trad 0 0˙ ˙ ( ) with  = M100

11
ej˙ ergs s−1 and =t 10 day.

Assuming charged particle thermalization depends only on
mass density (which declines like -t 3 in a homologous flow),

the energy loss is
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where r0 is the density at t0, and ψ is a scaling factor such that
yr = E t0 part 0˙ ( ), which will be unique to each particle type. The
rate at which energy is thermalized, E tth˙ ( ), is given by the
number of live particles N multiplied by the rate at which they
lose energy,
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At any time t, the oldest live particle originates from an earlier
time ti, defined by
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The number of live particles at time t is then
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where tineff is the inefficiency timescale defined in the previous
section.
It is now straightforward to calculate the ratio fp of

thermalized to emitted energy for a massive particle of type p,
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Equation (32) can be used to estimate the thermalization
efficiencies of massive particles, where the relevant timescales
tineff,p are given by Equations (21) (b-particles), (25)
(a-particles), and (25) (fission fragments).
For g-rays, the thermalization efficiency is approximately

equal to the interaction probability: » -g
t-f t e1 .( ) We can

estimate the optical depth t rk» gRej using kg¯ , the g-ray
opacity averaged over the emission spectrum. Optical depth is
related to gtineff, by
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Figure 9 shows our analytic thermalization functions for
= ´ -

M M5 10ej
3 , and =v c0.2ej , using the expressions for

tineff derived in Section 3. For massive particles, we used

Figure 8. Ratio tineff/tpeak for all particles, for vej in the range 0.1c–0.3c. Fission
fragments, and to a lesser extent a-particles and low-energy b -particles,
thermalize efficiently out to late times. Higher energy b’s and g -rays are
expected to become inefficient on kilonova timescales. The width of the curves
is due to the range of vej considered, since tineff/tpeak varies inversely with vej.
Curves for the fiducial velocity vej=0.2c are overplotted in dotted black lines.
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2022-05-23 | Luke Shingles (GSI)

1D grey-opacity light curve

10


	�
 
		 
	


�����������


	��


	
	


	




	
�

��
��
�

��


��	��

��	��

��	�


��	��

�	

�	��

�	�


�	��

�	��

�


������

Christine Collins 3D result

1D detailed decay and deposition
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10x density test (0.04 Msun) vs AT2017gfo
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1D detailed decay and deposition
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2022-05-23 | Luke Shingles (GSI)

Conclusions and future work

▪We have modelled radioactive emission, thermalisation, and luminosity for simulated merger ejecta

▪Change in slope is due to optical depth transition rather than thermalisation efficiency drop (agreement with 
Hotokezaka & Nakar 2020)

▪Soon: use new atomic data set for lanthanides and actinides for detailed line-by-line opacities and synthetic 
spectra (see talks of Andreas Flörs and Gerrit Leck on atomic data)

▪ 2D/3D is possible, just expensive (see Christine’s 3D results with simplified deposition)

• Memory limit: 503 grid with ~70,000 non-empty cells means 1GB RAM holds 1900 FP64/cell

• Number of levels treated in full NLTE will be need to be selected (but node shared memory)

• Per level photoionisation rate estimators not practical (not node sharable without atomic access)

• Christine showed some angle-dependence of luminosity with a grey opacity model

• Spectra with an asymmetric ionisation/temperature structure might show more variation
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