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ARTIS radiative transfer code

m ARTIS is a 3D-capable Monte Carlo radiative transfer code
(method of Lucy 2002)

m Radioactive decay energy release over simulation period is
discretised into packets at simulation start

m Pellets of radioactive energy co-move with the ejecta until
a decay, then can make several state transitions according
to energy flows until a photon packet exits the simulation
volume (contributing to the synthetic spectra and light
curve).

m Simulations always follow a time evolution with light travel

time accounted for (no single-time snapshots like
CMFGEN, TARDIS).
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Kromer & Sim (2009)

pellets col. excitation_ |

ti—l radigactive ——— 1—packets
| = = - nuclides col. 1onization
| col. deexc. papkqts qf excitation/
[ 23 ionization energy
| 5 [T col b
I k & COl. 1reCOombD.
. . D 1
. pair prd/ S
I C p £ bb

ompton = A
! = a3z [™ —b
——+—>{ y—pkts N~ ol ¢ E absorption
B
: photoeffect k 2 ff
: I C bb fb
! : t 2 es Y Y
| : S £
: | 9 L
! R = | ff—emission r—packets
|
Sk U ) - monochromatic packets
1 T ?

Figure 1. Flow chart outlining the mode of operation of the code. For discussion, see the text.




Non-thermal particle deposition

m With a continuous source of high-energy decay particles that don't
thermalise efficiently, the energy distribution stays non-Maxwellian

m e.9., Type la supernovae at late times: positrons from Co56 decay
and electrons Compton-scattered by gamma rays

m We obtain the non-thermal electron distribution by numerically
solving the Spencer & Fano (1954) equation using the method of
Kozma & Fransson (1992)

m SF equation accounts for sources and sinks due to energy

deposition, heating (Coulomb scattering), excitation, and ionisation.

m Similar to Li, Hillier, & Dessart (2012) for CMFGEN, using impact
lonisation cross sections from Arnaud & Rothenflug (1985) and
Arnaud & Raymond (1992).

m Rates for non-thermal ionisation, excitation, and heating obtain by

integrating over the energy distribution
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Importance of non-thermal ionisation

m Matching observed ionisation state is a major challenge for
Type la supernovae models > ~100 days

m Sub-Chandrasekhar-mass models are too highly ionised with
detailed non-thermal ionisation (Wilk+ 2018, Shingles+ 2020)

m Wilk et al. (2018, 2020) suggest ejecta clumping boosts

F, at 1 Mpc [10713 erg/s/cm?/A]

recombination rate
m We tested reduction of non-thermal ionisation rates by
boosting thermal losses (Shingles+ 2022)

m Relevance to kilonovae: Pognan+ 2022 estimate that as early
at three days after merger, non-thermal ionisation > collisional
and photoionisation for non-neutral species.

e Used a similar Spencer-Fano solver and approximate cross
sections (no impact ion. data available for Lanthanides?)

F, at 1 Mpc [10~!* erg/s/cm?/A]
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ARTIS developments

m ARTIS now has a non-thermal solver, non-LTE level populations, binned radiation field and detailed
photoionisation rate estimators (Shingles et al. 2020)

m ARTIS originally followed just a few decay chains relevant to Type las (e.g., Ni56->C056->Fe56) beta-
plus and electron-capture only.

m Now includes decays in a more generalised way

* Models here include 2591 nuclides with alpha and beta-minus decays from ENDF/B-VII.1
(Chadwick+ 2011 via Hotokezaka’s data file public on GitHub)

 Abundance calculation from Bateman equation summed over all ancestor paths. No loops allowed
(e.g. no n or p-capture reactions)

e Gamma-ray decay spectra from NNDC and full transport

e Particle emission using average kinetic energy per decay
* |ocal but non-instantaneous deposition (assumed to be fully trapped)

I=== 1
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Synthetic spectra and light curves from merger models

Hydrodynamics densities Radiative
transfer
model

_ light curves
and spectra

and nuclear
network

composition

m Model of dynamical ejecta density by Vimal Vijayan (SFHO EoS including neutrinos for the mass
1.35-1.35 Msun, ejecta mass: 0.004 Msun, see Vimal’s talk)

m Density structure combined with r-process abundances from detailed nuclear network calculation at
0.01 days (Martinez-Pinedo)

m Currently, 1D spherical average is used for fast prototyping (but 2D/3D is planned)
m ARTIS follows simple density (homologous) and abundance evolution (decays) while calculating

radiative transfer
m For now, | test with Tanaka+ 2020 grey opacity vs Ye (same as Collins model)
e Future: line-by-line Sobolev opacity with element/ion composition and NLTE level populations

I=s 5= 1l
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Radioactive decay power ARTIS vs full network
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Abundance evolution ARTIS vs full network
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Thermalisation results and Barnes+ (2016) approximation

® Deposition time from average particle energy per | ' ' '

nuclear decay and approximate loss rate (4e10*p/(g
cm-3) [MeV/s] for beta, 5e11*p/(g cm-3) for alpha) particle
deposition occurs after emission, but in the same

location.

® Deposition is local (no escape). Assumed to be trapped

by magnetic fields.

® (preliminary) Right: compare this to the Barnes+16

analytical approximation (one-zone sphere and typical
beta, alpha energy of 1, 5 MeV/decay)
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1D grey-opacity light curve

1042 ¢

erg/s

1039

Christine Collins 3D result

1071 109

Time (days)

2022-05-23 | Luke Shingles (GSI)

10!

1

0.8

0.6

0.4

0.2
cos(O
-0.2
-0.4
-0.6

-0.8

[erg/s]

10%3 ¢

1039

1038

1D detailed decay and deposition

1042:
10* |
1040:

F ——- ARTIS Egep p-
. —— ARTIS N

® AT2017gfo (Smartt+2017) M

109 101
Time [days]

1071

10




10x density test (0.04 Msun) vs AT2017gfo

1D detailed decay and deposition
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Conclusions and future work

m We have modelled radioactive emission, thermalisation, and luminosity for simulated merger ejecta

m Change in slope is due to optical depth transition rather than thermalisation efficiency drop (agreement with
Hotokezaka & Nakar 2020)

m S00N: use new atomic data set for lanthanides and actinides for detailed line-by-line opacities and synthetic
spectra (see talks of Andreas Flors and Gerrit Leck on atomic data)

m 2D/3D is possible, just expensive (see Christine’s 3D results with simplified deposition)
e Memory limit: 503 grid with ~70,000 non-empty cells means 1GB RAM holds 1900 FP64/cell
* Number of levels treated in full NLTE will be need to be selected (but node shared memory)
e Per level photoionisation rate estimators not practical (not node sharable without atomic access)

e Christine showed some angle-dependence of luminosity with a grey opacity model

e Spectra with an asymmetric ionisation/temperature structure might show more variation

iI= 5= II
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