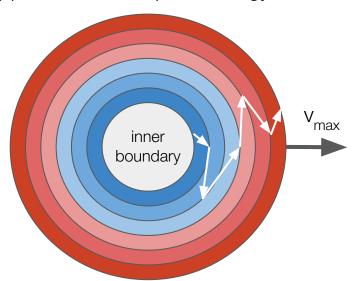
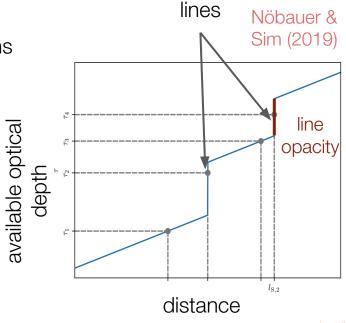

Electromagnetic Counterparts of Neutron Star Mergers: Signatures of Heavy r-Process Nucleosynthesis

Andreas Flörs (GSI) Luke Shingles (GSI, QUB), Gerrit Leck (GSI), Gabriel Martínez-Pinedo (GSI) Ricardo Ferreira da Silva (LIP)

spectral signatures of r-process material?




TARDIS

TARDIS is a 1D open-source Monte-Carlo radiative transfer spectral synthesis code

→ Inner boundary: only early spectra possible

→ Sobolev approximation: requires energy levels + transitions

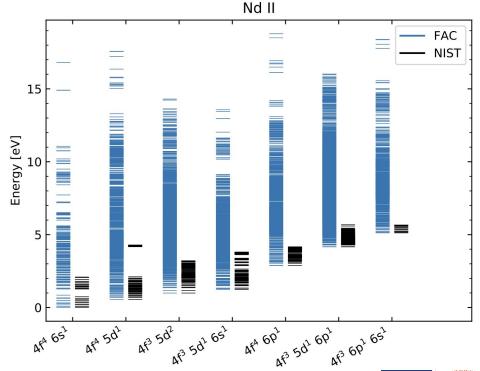
Atomic Opacities (LTE)

$$k_{\rm exp}^{\rm bb}(\lambda) = \frac{1}{\rho ct} \sum_{l} \frac{\lambda_{l}}{\Delta \lambda_{\rm bin}} (1 - e^{-\tau_{l}}) \qquad \tau_{l} = \frac{\pi e^{2}}{mc} \int_{l}^{l} \frac{n_{l}}{n_{l}} t \lambda_{l}$$
 Partition function Strength Wavelength Saha ionisation:
$$\frac{n^{i}}{n^{i-1}} = \frac{Z^{i}(T)g_{e}}{Z^{i-1}(T)n_{e}} e^{-(E_{i}-E_{i-1})/k_{B}T}$$
 Ionisation energy Boltzmann excitation:
$$n_{l} = \frac{g_{l}}{a} e^{-E_{l}/k_{B}T} n_{0}$$

Energy Levels - Opacity

H Hydrogen 1008 3 Lithium 6.94	Be Beryllium Socress	Some levels & transitions known											14 IVA	7 N Nitrogen 14.007	16 VIA S O Oxygen 15,999	17 VIIA 9 Filuorine 15 9596403363	** He Helium 4,002602** 10 Ne Neon 201797 18
Na Sodium 22.98970928	Mg Magnesium 24.305	3 IIIB	1VB	5 VB	vib Cr	VIIB	viiib Fe	VIIIB	10 VIIIB	11 IB	12 IIB	Aluminium 26.9815385	Silicon 28.085	P Phosphorus 30 973783998	Sulfur 3200	Chlorine	Ar Argon
l K	Ca	Sc		/	(- P	I IVI D		1 -0			/ n	1-2	1 -0	1 // 6	- C	Hr	
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Cu	Zinc	Gallium 69.723	Germanium 72.630	As Arsenic 74.921595	Selenium 78.971	Br Bromine 79.904	Kr Krypton 83.798
37 Rb Rubidium	Sr Strontium	Scandium 39 Y Yttrium	Zr Zirconium	Vanadium 41 Nb Niobium		Manganese 43 TC Technetium	Ru Ruthenium	Cobalt Rh Rhodium	Nickel Pd Palladium		Zinc Zinc Cd Cadmium	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
Potassium 37 Rb Rubidium	Strontium	Scandium 39	Zr Zr	Vanadium 41 Nb Niobium 73 Ta Tantalum 180,94788	Chromium 42	Manganese 43	Iron 44	Cobalt 45	46	Copper 47	[®] Cd	Gallium 69.723	Germanium 72.630	Arsenic 74.921595 51 Sb	Selenium 78.971	Bromine 79.904	Krypton 83.798 54

Lanthanum 138.90547	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gd Gadolinium	7b Terbium 158.92535	Dy Dysprosium 162.500	Holmium 164,93033	Er Erbium	Tm Thulium 168.93422	Yb Ytterbium 173.045	Lutetium
Actinium (227)	90 Th Thorium 232,0377	Protectinium	92 Uranium 238.02891	Np Neptunium	Plutonium	Americium	Cm Curium (247)	97 Bk Berkelium (247)	Cf Californium	Es Einsteinium	Fermium (257)	Mendelevium	Nobelium (259)	Lawrencium

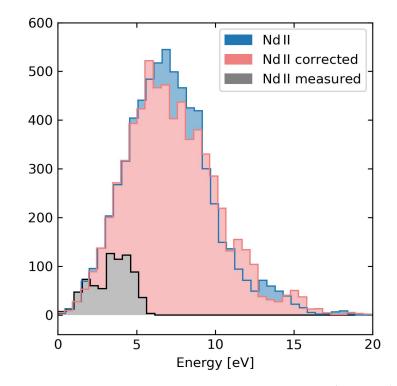

Atomic Opacities: Level Energies

Energy corrections for each P-J and for each configuration

- exact matching difficult due to mixing
- shift to lowest measured level

Convergence of atomic data:

see presentation by Gerrit Leck (GSI)

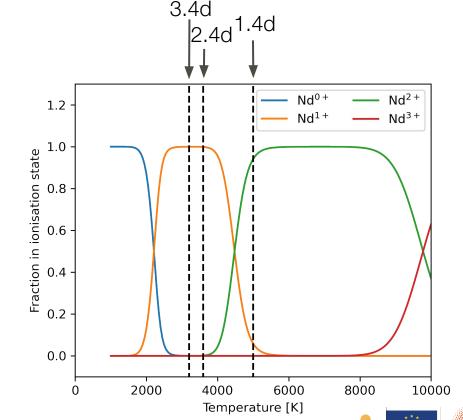


Atomic Opacities: Level Energies

Energy corrections for each P-J and for each configuration

- exact matching difficult due to mixing
- shift to lowest measured level

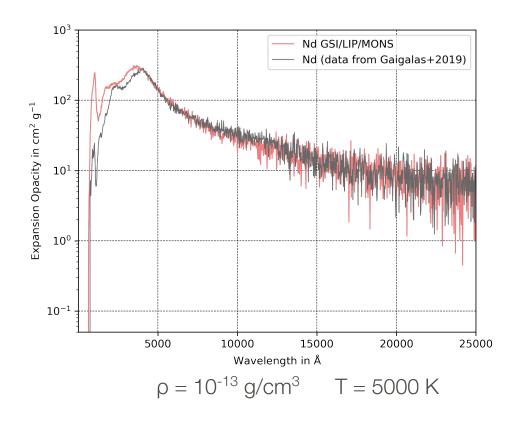
Density of low lying levels in agreement with measurements


Atomic Opacities: Ionisation Balance

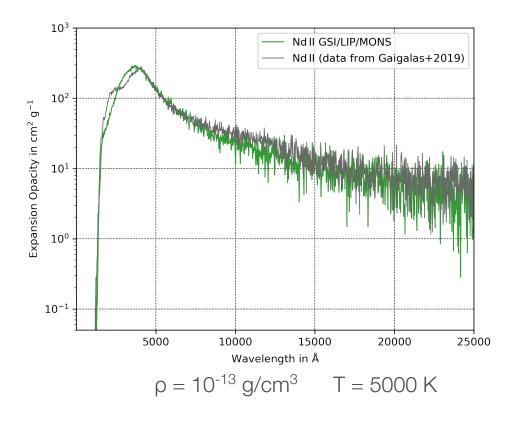
Lanthanides and actinides more highly ionised compared to the iron-group

- early phases doubly ionised
- after ~2 days singly ionised

Singly ionised material has higher bound-bound opacity than doubly ionised material


ionisation transition showing up in the spectrum?

Atomic Opacities: Expansion Opacity

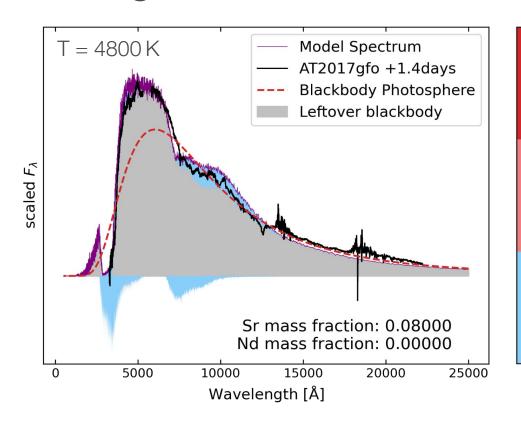


very good agreement with published data from Gaigalas+2019

$$\kappa_{\text{exp}}(\lambda) = \frac{1}{ct\rho} \sum_{l} \frac{\lambda_l}{\Delta \lambda} (1 - e^{-\tau_l})$$

Atomic Opacities: Expansion Opacity

very good agreement with published data from Gaigalas+2019


differences likely due to different atomic structure codes (FAC vs Hullac) and included configurations

$$\kappa_{\text{exp}}(\lambda) = \frac{1}{ct\rho} \sum_{l} \frac{\lambda_l}{\Delta \lambda} (1 - e^{-\tau_l})$$

Modelling a Nd Kilonova

Exponential density profile

- Nd III

- Nd II

Sr II

$$\rho(v, t_{\text{exp}}) = \rho_0 \left(\frac{t_0}{t_{\text{exp}}}\right)^3 \left(\frac{v}{v_0}\right)^{-\Gamma}$$

with power-law index Γ =3

Modelling a Nd Kilonova

Exponential density profile

- Nd III
$$\rho(v, t_{\rm exp}) = \rho_0 \left(\frac{t_0}{t_{\rm exp}}\right)^3 \left(\frac{v}{v_0}\right)^{-\Gamma}$$

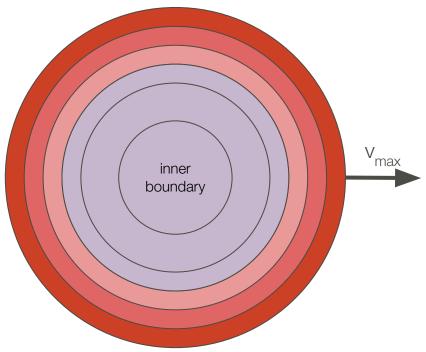
with power-law index Γ =3

Increase the Nd mass fraction from 10⁻⁵ to 10⁻¹

Low abundance: only line blanketing

- Nd II

Sr II


High abundance: line blanketing in addition to spectral features in the NIR

Kilonova Tomography

2 days

Ejecta become transparent over time

photosphere moves inwards (in velocity space)

But composition of outer layers remains the same!

Fix properties of outermost layer (density, composition) by modelling the first observed spectrum

Find best solution for inner layers by modelling a later spectrum and keeping outer layers fixed

This can tell us how much heavy r-process material can be in the kilonova

Atomic Opacities (NLTE)

Late phases (> 1-2 weeks): electron—ion collisional excitation rates << radiative decay rates

- \rightarrow LTE no longer valid \rightarrow non-LTE
- → need to solve statistical equilibrium equations

$$\frac{dn_{m,i}}{dt} = \sum_{j} n_{m-1,j} \Gamma_{m-1,j \to m,i} + \sum_{j} n_{m+1,j} \alpha_{m+1,j \to m,i} n_e + \sum_{j \neq i} n_{m,j} T_{j,i}$$
 out
$$\sum_{j \neq i} transitions ionisation recombination \\ -n_{m,i} \left(\sum_{j \neq i} T_{i,j} + \sum_{j} \Gamma_{m,i \to m+1,j} + \sum_{j} \alpha_{m,i \to m-1,j} \right).$$

with $T_{i,j}$ including

thermal electron-ion spontaneous photon collisions emission stimulated photon emission
$$T_{u,l} = C_{u,l}^{\rm thermal} + C_{u,l}^{\rm non-thermal} + T_{u,l}^{\rm spont} + T_{u,l}^{\rm stim}$$

$$T_{l,u} = C_{l,u}^{\rm thermal} + C_{l,u}^{\rm non-thermal} + T_{l,u}^{\rm abs}$$
 photon absorption collisions

Summary

Spectral modelling of AT2017gfo (and future events) allows us to learn about r-process production sites

LTE modelling requires knowledge about energy levels and radiative transitions

very limited data available so far, no data for actinides

Calibration of computed atomic data essential - not possible for actinides

We computed atomic data for all elements from Zr to $U \rightarrow currently$ calibrating the data

Late-phase modelling requires even more atomic data

experimental input extremely important

We have evidence for r-process material in AT2017qfo

abundance tomography can tell us how much

