Status report of MCP-PMTs performance tests

F. Uhlig, A. Britting, W. Eyrich, A. Lehmann Universität Erlangen-Nürnberg

Performance tests

- dark count rate
- rate stability
- time resolution
- surface scans
- magnetic field behaviour

Investigated MCP-PMTs

pore size (µm)
number of pixels
active area (mm²)
total area (mm²)
geom. efficiency (%)
peak Q.E. (measured)
comments

	BINP	Burle-Photonis			Hamamatsu		
		XP85013	XP85012	XP85112	R10754X-06-L4	R10754X-01-M16	
	7	25	25	10	10	10	
	1	8x8	8x8	8x8	4x1	4x4	
	9² π	53x53	53x53	53x53	22x22	22x22	
	15.5² π	59x59	59×59	59x59	27.5x27.5	27.5x27.5	
	36	81	81	81	61	61	
)	21% @ 500 nm		22% @ 390 nm	22% @ 390 nm	21% @ 375 nm	21% @ 390 nm	
	no protection layer different photo cathode		better vacuum polished surfaces		protection layer between MCPs		
						T T T T T T T T T T T T T T T T T T T	

- this talk: comparison of several models of MCP-PMTs
 - BINP, Photonis XP85112 and Hamamatsu R10754X

new BINP MCP-PMT

- different photo cathode (Na₂KSb(Cs) + Cs₃Sb) with higher dark count rate (~100 kcps)
- MCP degassing:
 - heating
 - duration of electron scrubbing increased without gain loss
 - → longer lifetime

Dark Count Rate of BINP MCP-PMTs

- high dark count rates (100 and 171 kcps at U_{pc-mcp} = 300V, 10⁶ gain)
- BINP #3548 has a lower dark count rate because it was longer baked in the production process, but also lower gain

Dark Count Rate of Hamamatsu R10754X MCP-PMTs

• dark count rate of both devices ≤ 1 kcps

Rate Stability of various MCP-PMTs

- rate capability of new BINP (7 μ m) improved to ~ 2 Mhz/cm² s.ph.
- XP85112 (10µm) and XP85012 (25µm) also stable up to ~ 2 MHz/cm² s.ph.
- Hamamatsu SL10 stable up to \sim 7 MHz/cm² s.ph.

Fred Uhlig

PANDA Collab. Meeting, 12-16 Dez 2011

Single Photon Time Resolution BINP

Amplifier Ortec FTA820 (x200; 350 MHz) --- Discriminator Philips Scientific 705

• time resolution σ < 40 ps

Single Photon Time Resolution Hamamatsu

Amplifier Ortec FTA820 (x200; 350 MHz) --- Discriminator Philips Scientific 705

• time resolution σ < 35 ps

Gain and Crosstalk of XP85112

- up to factor 5 gain variations between pixels (in center!)
- 50% crosstalk level extends ~1 mm into adjacent pixel
- but no long crosstalk tails

Fred Uhlig

Gain and Crosstalk of R10754X-M16

- gain variations of factor 3 even within the same pixel
- 50% crosstalk level extends only little into adjacent pixel
- long tails in crosstalk are of electronic nature

Gain and Crosstalk of R10754X-L4

- gain variations of factor ~2
- better crosstalk behaviour than the R10754X-M16 (4x4 pixels)
- long tails in crosstalk are of electronic nature

Fred Uhlig

PANDA Collab. Meeting, 12-16 Dez 2011

Gain in Magnetic Field

10 µm MCP usable up to 2 Tesla

Gain and Direction of B-Field (Φ)

Gain and Direction of B-Field (θ)

• Dependence only at specific rotation angles θ , and at tilt angles, which are similar to the chevron angle of the MCP

PANDA Collab. Meeting, 12-16 Dez 2011

Summary and Outlook

- Performance of newer Photonis XP85112 #9001223 (10 µm) also shows good performance in rate stability, time resolution and magnetic field immunity
- Hamamatsu R10754X-M16/L4 models suitable for both PANDA DIRCs in terms of rate stability, timeresolution and B-Field immunity
- SensL SiPM array and Hamamatsu SiPMs performance tests (dark count, timing) in cooling box

Time Resolution Measurements

- 3 GHz / 20 Gs oscilloscope
- measure area (C2)
- measure delay of PiLas reference pulse C3 to MCP pulse C1 ⇒ jitter = time resolution

- timewalk to be corrected for
 - sampling noise of oszilloscope
 - longterm drifts in delay

