# **Online Tracking**

Sean Dobbs, A. Tomaradze

(Northwestern University)

M. Mertens

(Forschungszentrum Jülich GmbH)

#### Introduction

- Efficient online tracking algorithms are essential for triggering on physics events, such as those including states like  $J/\psi$  or *D*-mesons, those with interesting topologies, like displaced vertices, and as input to other trigger objects.
- We performed a survey of the algorithms used by other experiments as a starting point for STT online tracking.
- Our search concentrated on experiments
  - that ran in the past decade,
  - had cylindrically symmetric geometry (e.g. not LHCb)
  - had wire chamber-like main tracking system
- Caveat: Details were not always easy to find or compare between different experiments, and often changed during the course of the experiment. (Many people involved in their implementation have left physics, too!)

# Tracking Algorithms

• Generally, there are two categories of track finding algorithms:

- "local": track/road following, Kalman filter, etc.
- "global": Hough transform, Histogramming, etc.
- The trigger systems investigated are generally divided into a series of well-defined levels, but for our purposes, it makes more sense to talk of a series of tasks, such as:

track segment finding  $\rightarrow$  track building  $\rightarrow$  track fitting

- Improvements in processor and network speed have lead towards more comprehensive prompt reconstruction. Use of hardware-level parallelism is also crucial.
- N.B.: Algorithms are highly optimized for their specific detectors.

### **Template Matching**

- Find track segments ("tracklets") in subset of detector ("superlayer") using large, fast associative memory banks in modern FPGAs
- Patterns based on realistic tracks, allowing for the possibility of missing hits. Can include patterns from tracks with displaced vertices.



• Example: BaBar matches eight-cell patterns that "pivot" around cell 4, with hits required in either four or three layers.

- Start with initial track segment on inside or outside of detector
- Build track by extrapolating from initial segment, adding hits along predicted path
- Example: BaBar starts with track segments from inner superlayer, and builds outwards allowing one or two (in certain circumstances) superlayers to be missing.



Figure 3: Track Linker Algorithm: two example tracks. The long track on the left side shows a segment hit pattern for an "A" track for which the segment hit corresponding to superlayer US is missing. The short track on the right side illustrates the stereo-wire rotation effect of a track with significant inclination, a track that is far from normal to the z-axis.

#### **Experiment Parameters**

| e                                     | event rate                      | trigger rate                                              | avg. track                                                                    | layers                                       | cell size                       | trigger                                                  |
|---------------------------------------|---------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------------------|
| $e^+e^-$ Expe                         | eriments                        |                                                           | murci.                                                                        |                                              | (1111)                          | enterency                                                |
| CLEO III<br>BaBar<br>Belle<br>BES–III | 250kHz<br>2kHz<br>5kHz<br>~3kHz | < 1kHz/130Hz<br>970Hz/120Hz<br>500Hz/500Hz<br>> 4kHz/1kHz | $egin{array}{l} \sim 8 & (B\overline{B}) \ 2 & (e^+e^-) \ \sim 4 \end{array}$ | 47<br>40<br>50<br>43                         | $7 \\ 6 - 8 \\ 8 - 10 \\ 6 - 8$ | $\sim 99\% \ \sim 94\% \ > 90\% \ \sim 99\% \ \sim 99\%$ |
| ep Experiments                        |                                 |                                                           |                                                                               |                                              |                                 |                                                          |
| ZEUS<br>H1                            | $\sim\!1 MHz$                   | 600Hz/100Hz/20Hz<br>1kHz/200Hz/50Hz/~5Hz                  | $\sim 10$                                                                     | 72<br>56                                     | $^{\sim25}_{23-43}$             | $\sim$ 70 $-$ 90%                                        |
| $pp + p\bar{p}$ Experiments           |                                 |                                                           |                                                                               |                                              |                                 |                                                          |
| CDF<br>DØ                             | 7.5MHz                          | 30kHz/750Hz/75Hz<br>10kHz/1.5kHz/50Hz                     | $\sim$ 35                                                                     | 96<br>32                                     | 8.8<br>0.4                      | $96\% \ \sim 95\%$                                       |
| CMS<br>ATLAS                          | $\leq$ 40MHz                    | 100kHz/100Hz<br>100kHz/2kHz/200Hz                         | > 100                                                                         | $\begin{array}{c} \sim 12 \\ 36 \end{array}$ | 2                               | 85–98%<br>> 90%                                          |
| PANDA                                 | ~20MHz                          |                                                           | $\sim 4\!-\!6$                                                                | 24                                           | 5                               |                                                          |

# L1 Track Finding Algorithms

| CLEO    | templates for 16 axial layers, 8 stereo 4–layer superlayers                       |
|---------|-----------------------------------------------------------------------------------|
|         | stereo track "roads" matched, correlated to axial tracks                          |
| BaBar   | $r - \phi$ : tracklets found using templates for 8–cell groups                    |
|         | in 4–layer superlayers, track following using 32 $\phi$ and 10 radial sectors     |
|         | z: Hough transform using 8 $\phi$ and 10 radial bins, followed by 2 $\chi^2$ fits |
| Belle   | $r-\phi$ : tracklets found using templates for 5/6–layer superlayers              |
|         | track following using 64 wedges in $\phi$ and 6 radial sectors                    |
|         | z: templates using 4 superlayers and 3 cathode layers in 8 $\phi$ sectors         |
| BES-III | BaBar–style tracklet finding                                                      |
|         | + track following in 4 superlayers (3 inner 1 outer)                              |

track following in 4 superlayers (5 inner, 1 outer)

# L1 Track Finding Algorithms

| CDF            | tracklet finding in 4 axial 12–layer superlayers,<br>road finding in 288 $\phi$ -slices, both with templates                                             |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| DØ             | templates for 8 double layers in 80 $\phi-$ slices                                                                                                       |
| ZEUS<br>H1     | templates for 3 axial 8–layer superlayers<br>L1: tracklet finding in 4 3–layer superlayers, histogram track finder<br>L2: finer histogram + $\chi^2$ fit |
| CMS &<br>ATLAS | Currently no hardware–based track finding, planned for upgrade in $\sim 2016-18?$                                                                        |

Later stages would either refine these results or fit tracks using simplified  $\chi^2$  fit or a variation of the offline reconstruction algorithms.

| CLEO    | axial: 32 Xilinx 5202, 16 Altera 7084                |
|---------|------------------------------------------------------|
|         | stereo: 60 Altera 8820, 60 Altera 7128               |
| BaBar   | Xilinx Virtex 2: 72 axial, 48 stereo                 |
| Belle   | 1024 track segment finder, 64 track finder (Xilinx?) |
| BES III | Xilinx Virtex 2                                      |
|         |                                                      |
|         |                                                      |

CDFAltera Flex 10k: 336 Track Finder, 288 Track LinkerDØ160 Xilinx Virtex 2

### Challenges for PANDA

- The challenge for PANDA is to accurately reconstruct tracks in a high rate ( $\sim$  20 MHz) low average multiplicity ( $\sim$  4) environment.
- A simple order-of-magnitude calculation is informative:
  - The event rate expected at PANDA is most similar to other  $p\bar{p}/pp$  colliders, roughly 2 3 times that at the Tevatron.
  - However, the event multiplicity at PANDA is an order of magnitude smaller than at the Tevatron.
  - The STT has about the same number of channels as DØ's fiber tracker, and an order of magnitude fewer channels than CDF's central drift chamber.
  - Our online computing hardware will certainly be more powerful than previous experiments.
  - Therefore, effective online tracking at PANDA should be possible with a reasonable amount of resources.
- The required trigger performance is driven by the benchmark physics channels, so we are in the process of implementing several tracking algorithms for benchmarking.

- Online tracking at PANDA is of comparable difficulty to other recent experiments.
- We are implementing several algorithms for online tracking which will be benchmarked against key physics channels.
  - BaBar & ATLAS have similar geometries to PANDA STT, so they could be a good starting place.
    BaBar/BES-III's track finding algorithm are said to handle curling tracks well, but requires the use of z-information.
  - Displaced vertices are generally handled well, though dealing with decays inside the STT take more planning.
  - Tracking trigges are sensitive to beam-generated backgrounds.
- It is important to design algorithms to take advantage of hardware–level parallelism, and to take advantage of the specific properties of the STT.

# **Online Algorithms**

|         | detector | algorithm                                                          |
|---------|----------|--------------------------------------------------------------------|
| CLEO    | DR       | L1: lookup table (full inner + four-layer outer) + road following  |
|         |          | L3: 2D $\chi^2$ circle fit                                         |
| BaBar   | DR       | L1: four–layer tracklet finding $+$ road following                 |
|         |          | L3: lookup table + fast Kalman fit                                 |
| Belle   | DR       | L1: 5/6–layer tracklet lookup table $+$ combinatorial wedge finder |
|         |          | L3: conformal transform $\chi^2$ fit                               |
| BES-III | DR       | L1: 4–layer tracklet lookup $+$ road following                     |
|         |          | L3: Kalman fit                                                     |
| ZEUS    | DR       | L1: tracklet finding/matching in $r - \phi$ and $z - r$            |
|         |          | L2: Road following $+ r - \phi \chi^2$ circle fit $+ z$ info       |
|         |          | L3: Kalman fit                                                     |
| H1      | DR       | L1: tracklet finding/matching in $4 	imes 3$ axial layers          |
|         |          | L2: 2D $\chi^2$ circle fit in $r - \phi$ and $r - z$               |
|         |          | L3: none                                                           |
|         |          | L4: Kalman fit?                                                    |

#### DR: Drift Chamber

### **Online Algorithms**

| CDE   | DR          | 1: A lower tracklet lookup $\pm$ road finding in axial superlayers |
|-------|-------------|--------------------------------------------------------------------|
| CDI   | DR          |                                                                    |
|       |             | L2: add in stereo hits near axial tracks, simple $\chi^2$ fit      |
|       |             | L3: Histogram & Kalman                                             |
| DØ    | Fiber       | L1: lookup table (8 axial double–layers)                           |
|       |             | L2: simple $\chi^2$ fit, classification                            |
|       |             | L3: road following (Kalman–like), silicon+fiber                    |
| CMS   | Silicon     | L1: none                                                           |
|       |             | L3: Kalman + DAF (tracks/vertex) + GSF (electrons)                 |
| ATLAS | Straw tubes | L1: none – "Regions of Interest" are passed on                     |
|       |             | L2: Kalman filter with seeding from silicon                        |
|       |             | L3: Inside–out (road following $+$ DAF),                           |
|       |             | followed by outside–in (Hough trans. $+$ Kalman)                   |

In each of these four cases, the L3 algorithms were the same as the offline reconstruction.

- DAF: Deterministic Annealing Filter, sort of probabilistic Kalman filter, said to be good for high occupancies
- GSF: Gaussian Sum Filter, said to be good for particles with non–Gaussian energy loss