
PROOF integration
in FAIRROOT

Radoslaw Karabowicz
GSI

12.12.2011
XXIX PANDA Collaboration Meeting

What is PROOF?
PROOF stands for Parallel ROOt Facility.

It allows parallel processing of large amount of data. The output results
can be directly visualized (e.g. the output histogram can be drawn at the
end of the proof session).

PROOF is NOT a batch system.

The data which you process with PROOF can reside on your computer,
PROOF cluster disks or grid.

The usage of PROOF is transparent: you should not rewrite your code
you are running locally on your computer.

No special installation of PROOF software is necessary to execute your
code: PROOF is included in ROOT distribution.

GridKa 2011, ROOT and PROOF Tutorial

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

How does PROOF work?

root root

root

root

root

analysis
code data

node1

node2

node3

node4

data

data

data

results

results

results

results

analysis code, data

stdout, results

PROOF Master
PROOF Slave

GridKa 2011, ROOT and PROOF Tutorial

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

Trivial parallelism
Sequential
processing

data

Event 1
Event 2
Event 3
Event 4
Event 5
Event 6
Event 7
Event 8
Event 9
Event 10
Event 11
Event 12

results

Unordered
processing

data

Event 3
Event 2
Event 1
Event 4
Event 5
Event 8
Event 9
Event 7
Event 6
Event 12
Event 11
Event 10

results results

 data 1

Event 1
Event 2
Event 3
Event 4

results 1

 data 2

Event 5
Event 6
Event 7
Event 8

results 2

 data 3

Event 9
Event 10
Event 11
Event 12

results 3

Parallel
processing

==

= =
Σ

+ +

GridKa 2011, ROOT and PROOF Tutorial

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

PROOF terminology
The following terms are used in PROOF:

PROOF cluster
Set of machines communicating with PROOF protocol. One of those machines is normally
designated as Master (multi-Master setup is possible as well). The rest of machines are Workers.
Client
Your machine running a ROOT session that is connected to a PROOF master.
Master
Dedicated node in PROOF cluster that is in charge of assigning workers the chunks of data to be
processed, collecting and merging the output and sending it to the Client.
Slave/Worker
A node in PROOF cluster that processes data.
Query
A job submitted from the Client to the PROOF cluster.
A query consists of a selector and a chain.
Selector
A class containing the analysis code
Chain
A list of files (trees) to process
PROOF Archive (PAR) file
Archive file containing files for building and setting up a package on the PROOF cluster. Normally
is used to supply extra packages used by user job.
PROOF-Lite
PROOF cluster that uses only locally available CPU cores

GridKa 2011, ROOT and PROOF Tutorial

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

PROOF basics

• Easy to start (24 keyboard strokes):

• Easy to use (process selector on a chain):

karabowi@kp3mac001::~$ root -l
root [0] TProof::Open("")
 +++ Starting PROOF-Lite with 2 workers +++
Opening connections to workers: OK (2 workers)
Setting up worker servers: OK (2 workers)
PROOF set to parallel mode (2 workers)
(class TProof*)0x10187fc00
root [1]

root [1] TChain* myChain = new TChain("cbmsim")
root [2] myChain->AddFile("myFile.root")
(Int_t)1
root [3] myChain->SetProof()
root [4] myChain->Process("MySelector.C")

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

PROOF basics

• User needs to develop a selector:
karabowi@kp3mac001::~$ root -l
root [0] TChain* myChain = new TChain("cbmsim")
root [1] myChain->AddFile("myFile.root")
(Int_t)1
root [2] myChain->MakeSelector("MySelector")
Warning in <TClass::TClass>: no dictionary for class PndMCTrack is available
Warning in <TClass::TClass>: no dictionary for class PndSdsMCPoint is available
Warning in <TClass::TClass>: no dictionary for class FairMCPoint is available
Warning in <TClass::TClass>: no dictionary for class FairBasePoint is available
Warning in <TClass::TClass>: no dictionary for class FairTimeStamp is available
Warning in <TClass::TClass>: no dictionary for class FairMultiLinkedData is available
Warning in <TClass::TClass>: no dictionary for class FairLinkedData is available
Warning in <TClass::TClass>: no dictionary for class PndSttPoint is available
Warning in <TClass::TClass>: no dictionary for class PndGemMCPoint is available
Warning in <TClass::TClass>: no dictionary for class PndTofPoint is available
Warning in <TClass::TClass>: no dictionary for class FairMCEventHeader is available
Warning in <TClass::TClass>: no dictionary for class FairFileHeader is available
Info in <TTreePlayer::MakeClass>: Files: MySelector.h and MySelector.C generated from
TTree: cbmsim
(Int_t)0
root [4]

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

PROOF basics
• MySelector.h contains full list of the TTree

branches, and few functions that can be
filled by the user:

• Input and output controlled via TLists:

 virtual void Begin(TTree *tree); // executed on master at the beginning
 virtual void SlaveBegin(TTree *tree); // executed on each worker node at the beginning
 virtual void Init(TTree *tree); // executed on a worker when getting new tree
 virtual Bool_t Notify();
 virtual Bool_t Process(Long64_t entry); // executed for event “entry” in the tree
 virtual Int_t GetEntry(Long64_t entry, Int_t getall = 0) { return fChain ? fChain-
>GetTree()->GetEntry(entry, getall) : 0; }
 virtual void SetOption(const char *option) { fOption = option; }
 virtual void SetObject(TObject *obj) { fObject = obj; }
 virtual void SetInputList(TList *input) { fInput = input; }
 virtual TList *GetOutputList() const { return fOutput; }
 virtual void SlaveTerminate(); // executed on each worker node at the end
 virtual void Terminate(); // executed on master at the end

 TList* fInput; // list of objects available during processing
 TSelectorList* fOutput // list of objects created during processing

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

http://root.cern.ch/root/html/TList.html
http://root.cern.ch/root/html/TList.html
http://root.cern.ch/root/html/TSelectorList.html
http://root.cern.ch/root/html/TSelectorList.html

PROOF in FAIRROOT

GOALS:

• run FAIRROOT analysis on PROOF cluster

• restrict the changes to fairbase, i.e.

• reduce the changes in users’ analysis code &

• reduce the changes in users’ macros

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

PROOF in FAIRROOT

STEPS:

• load FAIRROOT libraries on the workers

• develop general selector

• change fairbase et al

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

PROOF Archive (PAR)
• gtar’red directory containing SETUP.C and optionally BUILD.sh.

These scripts will be executed on each worker node

• GOAL: have to load FAIRROOT libraries on each worker node

• IMPORTANT: need a simple way to get list of needed libraries;
this solution has to be general for each experiment using
FAIRROOT and has to require minimum users’ intervention

• SOLUTION: current implementation of libFairRoot.par
contains only SETUP.C which loads and executes gconfig/
rootlogon.C

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

FairAnaSelector

• The class deriving from TSelector with well defined
member functions that are executed in specific order.
Usually used as myChain->Process(MySelector); either locally
or on PROOF

• GOAL: send a FairRunAna with the list of tasks,
parameters, geometry, etc. to the workers, analyze the
chain, collect workers’ outputs and merge the outputs

• CHALLENGES: to send objects to the workers via TList*
fInputList the objects have to be “streamable”

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

FairAnaSelector

• “Streamable”? = ~simple~

• no instantons

• derive MyClass from TObject

• public default constructor MyClass();

• initialize all members to 0

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

FairAnaSelector

• SOLUTION: master FairRunAna opens proof session, adds
outputFileName, parameterFileNames, fTask to fInput,
uploads .par package and runs FairAnaSelector on the input
chain:

 TProof* proof = TProof::Open(fProofServerName.Data());

 proof->AddInput(new TNamed("FAIRRUNANA_fOutputFileName",outFile.Data()));
 proof->AddInput(new TNamed("FAIRRUNANA_fParInput1FName",par1File.Data()));
 proof->AddInput(new TNamed("FAIRRUNANA_fParInput2FName",par2File.Data()));
 proof->AddInput(fTask);

 proof->UploadPackage(fProofParName.Data());
 proof->EnablePackage(fProofParName.Data());

 inChain->SetProof();
 inChain->Process("FairAnaSelector","",NEntries,NStart);

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

FairAnaSelector

• SOLUTION: FairAnaSelector creates FairRunAna on each
worker node at the begin of the job, it asks this FairRunAna
to analyze individual events in the Process() function, the
FairRunAna is finished function and its output is stored in
TSelectorList* fOutput in the SlaveTerminate() function.

• OPTIONAL: The default ROOT’s file/tree merger may be
used to merge the workers’ output. It is also possible to
store the individual workers’ outputs.

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

PROOF in FAIRROOT
myMacro{ //running locally
 FairRunAna* fRun;
 fRun->SetInputFile();
 fRun->SetOutputFile();
 FairRuntimeDb* rtdb =
 fRun->GetRuntimeDb();
 rtdb->SetFirstInput();
 rtdb->SetSecondInput();

 fRun->AddTasks();
 fRun->Init();
 fRun->Run(firstEvent,
 lastEvent);
}

myMacro { // running on PROOF
 FairRunAna* fRun;
 fRun->SetInputFile();
 fRun->SetOutputFile();
 FairRuntimeDb* rtdb = fRun->GetRuntimeDb();

 rtdb->SetFirstInput();
 rtdb->SetSecondInput();

 fRun->AddTasks();
 fRun->Init();
 fRun->Run(firstEvent, lastEvent,”proof”);

}

void FairRunAna::Run
 (Int_t NStart,
 Int_t NStop) {
 for(Int_t iev=NStart;
 iev<NStop;
 iev++) {
 fTask->ExecuteTask()
 }
}

void FairRunAna::Run
 (Int_t NStart,

 Int_t NStop, const char* type) {
 TProof* proof = TProof::Open(“”);
 proof->AddInput(outFileName.Data());
 proof->AddInput(par1FileName.Data()));
 proof->AddInput(par2FileName.Data()));
 proof->AddInput(fTask);
 proof->UploadPackage(“libFairRoot.par”);
 proof->EnablePackage(“libFairRoot.par”);
 inChain->SetProof();
 inChain->Process("FairAnaSelector",
 "",NEntries,NStart);
}

FairAnaSelector::Init(TTree* tree) {
 if (!fRunAna) {
 fRunAna = new FairRunAna();
 fRun->SetInTree(tree);
 fRun->SetOutputFile(
 fInput->FindObject(outFileName));

 FairRuntimeDb* rtdb =
 fRun->GetRuntimeDb();
 rtdb->SetFirstInput(
 fInput->FindObject(par1FileName));
 rtdb->SetSecondInput(
 fInput->FindObject(par2FileName));

 fRun->AddTasks
(fInput->FindObject("FairTaskList"));

 fRun->Init();
 }
 else {
 fRunAna->SetInTree(tree);

 FairRootManager* ioman =
 FairRootManager::Instance();
 ioman->OpenInTree();
 }
}

FairAnaSelector::Process(Long64_t entry){
 fRunAna->RunEntry(entry);
}

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

fairbase et al
• On these slides several most important

currently implemented changes to
FAIRROOT will be summarized:

karabowi@lxi012::~/pandaroot_13510/trunk/base$ svn status
? FairAnaSelector.cxx
? FairAnaSelector.h
M FairRun.cxx
M FairRootManager.cxx
M FairRun.h
M FairTask.cxx
M FairRootManager.h
M CMakeLists.txt
M FairRunInfo.cxx
M FairRunAna.cxx
M FairTask.h
M FairLinkDef.h
M FairRunAna.h
karabowi@lxi012::~/pandaroot_13510/trunk/base$ svn diff | wc -l
 1714
karabowi@lxi012::~/pandaroot_13510/trunk/base$ svn status
M FairParRootFileIo.cxx
M FairParAsciiFileIo.cxx
M FairParIo.h
M FairParAsciiFileIo.h
M FairParIo.cxx
M FairDetParRootFileIo.cxx
karabowi@lxi012::~/pandaroot_13510/trunk/base$ svn diff | wc -l
 101

karabowi@.../trunk/parbase$ cd ../gem
karabowi@.../trunk/parbase/gem$ svn diff | wc -l
 349
karabowi@.../trunk/parbase/gem$ cd ../mvd
karabowi@.../trunk/parbase/mvd$ svn diff | wc -l
 231
karabowi@.../trunk/parbase/mvd$ cd ../sds
karabowi@.../trunk/parbase/sds$ svn diff | wc -l
 736
karabowi@.../trunk/parbase/sds$ cd ../stt
karabowi@.../trunk/parbase/stt$ svn diff | wc -l
 81
karabowi@.../trunk/parbase/stt$ cd ../global
karabowi@.../trunk/parbase/global$ svn diff | wc -l
 407

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

fairbase et al
FairRunAna (only most important mentioned):

• new member:

• TSelector* fSelector;

• new functions:

• void Run(Int_t NStart =0,Int_t NStop=0, const char *type);

• void RunEntry(Int_t entryNo);

• void SetInChain(TChain* tempChain);

• void SetInTree (TTree* tempTree);

• TTree* GetOutTree();

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

fairbase et al
FairRootManager (only most important mentioned):

• new member:

• TTree* fInTree;

• new functions:

• void SetInTree (TTree* tempTree);

• void SetInChain(TChain* tempChain);

• Bool_t OpenInTree();

• TObject* GetObjectFromInTree(const char* BrName);

• TObject* ActivateBranchInInTree(const char* BrName);

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

fairbase et al
MyTask (only most important mentioned):

• initialize all possible members to 0 in default
constructor MyTask();

• initialize all possible members to 0 in default
constructor MyClass() of class MyClass, which is a
member of MyTask,

• pointers to instantons as members are difficult to
stream

• do not ->Delete() empty pointers, protect with if:
if (myPointer) myPointer->Delete();

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

Running PROOF
• The simplest way to use PROOF is the

PROOF-Lite, which uses your own local
machine CPUs:

• For creating a PROOF cluster that uses
external CPUs one may use PoD (PROOF-
on-Demand: http://pod.gsi.de)

karabowi@kp3mac001::~$ root -l
root [0] TProof::Open("")
 +++ Starting PROOF-Lite with 2 workers +++
Opening connections to workers: OK (2 workers)
Setting up worker servers: OK (2 workers)
PROOF set to parallel mode (2 workers)
(class TProof*)0x10187fc00
root [1]

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

http://pod.gsi.de
http://pod.gsi.de

PoD & PROOF

• Here a SSH
plugin is used to
connect to the
workers

• Other plugins
developed are:
gLite, LSF, PBS,
Grid Engine,
Condor

konglaide@kp3mac001:pod-server start
Starting PoD server...
updating xproofd configuration file...
starting xproofd...
starting PoD agent...
preparing PoD worker package...
selecting pre-compiled bins to be added to worker package...
PoD worker package will be repacked because "/Users/konglaide/.PoD/etc/xpd.cf" was
updated
PoD worker package: /Users/konglaide/.PoD/wrk/pod-worker

XPROOFD [66174] port: 21001
PoD agent [66179] port: 22001
PROOF connection string: konglaide@kp3mac001.gsi.de:21001

konglaide@kp3mac001::~$ pod-ssh -c ~/PoD/pod_ssh.cfg --submit
**! PoD jobs have been submitted. Use "pod-ssh --status" to check the status.
konglaide@kp3mac001::~$ pod-ssh -c ~/PoD/pod_ssh.cfg --status
PoD worker "etch64_16": RUN
PoD worker "etch64_21": RUN
PoD worker "etch64_20": RUN
konglaide@kp3mac001::~$ root -l
root [0] TProof::Open(gSystem->GetFromPipe("pod-info -c"))
Starting master: opening connection ...
Starting master: OK
Opening connections to workers: OK (20 workers)
Setting up worker servers: OK (20 workers)
PROOF set to parallel mode (20 workers)
(class TProof*)0x1018a9e00
root [1]

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

mailto:konglaide@kp3mac001.gsi.de
mailto:konglaide@kp3mac001.gsi.de

Results

• Time performance

• Data quality

• Data integrity

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

Time performance

• Some remarks:

• one will (almost) never get ideal scaling, so
that n workers does not mean n time faster
job execution, due to multiple initialization,
library loading, PROOF overhead

• the IO limits the time performance

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

Time performance
• PROOF-Lite with 4 workers

• One task: PndGemFindHits

• speedup factor = local analysis
time/proof analysis time

• Tasks: PndMvdDigiTask, PndMvdClusterTask,
PndSttHitProducerIdeal, PndGemDigitize,
PndGemFindHits, PndBarrelTrackFinder

• green: nWorkers = 4

• blue: nWorkers = 2

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

Time performance

PROOF on
external CPUs

Using PoD with
SSH plugin,
lxi020 (4CPUs)+
lxi016 (8CPUs)+
lxi021 (8CPUs)

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

Data quality
• The result of the locally running

FAIRROOT and the one running of PROOF
are identical*

* - down to fRandom - the order of event
processing is different locally and on PROOF

locally
301185 entries
worker0
150301 entries
worker1
150884 entries

locally
167145 entries
worker0
83709 entries

worker1
83412 entries
sum
167121 entries

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

Data integrity

• The PROOF divides automatically the input
data into chunks and distributes them
among workers

• Extreme example: event distribution among
PROOF workers:

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

Data integrity
• Event order is mixed

in the output file

• Extreme example:
output vs input event
order

• Extreme in a sense,
that the mixing is on
an event level. When
more input files than
worker nodes, the
PROOF sends whole
files to workers

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

Remarks
• FAIRROOT has been adopted to run on a PROOF

cluster

• Tests results are promising

• Further work is still required

• The code is in the development branch and will be
available in the trunk soon

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

Backup slides

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

Detailed processing time

PROOF in FAIRROOT Radoslaw Karabowicz, GSI XXXIX PANDA CM 12.12.2011

