

Going fast on a small-size computing cluster

Martin Erdmann, <u>Peter Fackeldey</u>, Benjamin Fischer, Dennis Noll

FIDIUM - Kickoff

16.12.21

2 Starting Point

Typical LHC Analysis:

- Input: Datasets $\mathcal{O}(10)$ TB
- Output: Histograms $\mathcal{O}(1)$ GB
- Complex:

1 Professor

5 PhD Students

1 Master Student

Team:

- Many physics objects
- Deep learning discriminators

Software:

- NumPy + Scikit-HEP
- Dask
- HTCondor

Hardware:

- 245 Threads
- 22TB SSD Caches
- 72TB Disk Storage

Computing Strategy: MapReduce on columnar data accelerated by caching

3 Dataflow & Cluster sketch

We are happy to continue this work in FIDIUM and established a first collaboration with Thomas Kuhr and David Koch!

4 Results and Conclusion

Benchmark Results:

- $4.18 \cdot 10^9$ Events (386 GB)
- Speedup of **x1.5** through SSD caching
- Bottleneck here: decompression
- Representative compared to our
 HH → bbWW analysis

Conclusion:

- Optimise chunk processing by vectorisation and GPU-offloading
- Data caching/locality:
 - Nearline storage (NFS): reliable and low-latency
 - Deterministic use of distributed SSD caches (across workers)

Backup

6 RWTH Aachen Group - Prof. Erdmann

- <u>Team</u>:
 - I Professor
 - 5 PhD Students
 - 1 Master Student
- Hardware VISPA Cluster
 - 13 Worker machines, in total:
 - 245 threads, 2GB RAM each
 - 22TB SSD (FS-Cache)
 - Storage (NFS):
 - 6x12TB HDD (striped)
 - 1TB LVM SSD Cache
- <u>Software:</u>
 - NumPy and python-HEP ecosystem
 - Dask (dask-jobqueue)
 - Packaged by conda

7 Cache Affinity

On-Worker SSD Cache

Comparable to <u>CRUSH of Ceph</u>