

Superconducting Helmoltz LInear ACcelerator-project W. Barth^{1,2,3}

¹ Helmholtz Institut Mainz, Germany
² GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
³ Johannes Gutenberg-Universität Mainz, Mainz, Germany

1. Introduction & general HELIAC layout

2. Impact for user community

- 3. R&D activities
- 4. HELIAC status
- 5. Outlook

cw-Linac@GSI/Motivation

FAIR:

- high beam currents
- low repetition rate (max. 3 Hz)
- low duty factor (0.1 %, pulse length for SIS18 only 100 μs)

"Super Heavy Element":

- relatively low beam currents
- high repetition rate (50 Hz)
- high duty factor (100 %, pulse length up to 20 ms)

"Material Science":

- Heavy lons (m \ge 200)
- High Beam Energy (up to 10 MeV/u)
- high repetition rate (50 Hz)
- Continuous Beam Energy Variation (1.5 10 MeV/u)

cw-Linac@GSI/Motivation

FAIR:

- high beam currents
- low repetition rate (max. 3 Hz)
- low duty factor (0.1 %, pulse length for SIS18 only 100 μs)

"Super Heavy Element":

- relatively low beam currents
- high repetition rate (50 Hz)
- high duty factor (100 %, pulse length up to 20 ms)

"Material Science":

- Heavy lons (m \ge 200)
- High Beam Energy (up to 10 MeV/u)
- high repetition rate (50 Hz)
 - Continuous Beam Energy Variation (1.5 10 MeV/u)

Layout of the future superconducting cw HELIAC*

* HEImholz Linear ACcelerator

normal conducting superconducting cw- Linac cw-injector Linac **BMBF** PoF3*** PoF4* **former BMBF-NICA *HGF-Matter&Technoloy (ARD) Cryomodule 4 Cryomodule 3 **HGF-Innov.** Pool Crvomodule 1 Cryomodule 2 PoF2* LEBT RFQ QT1IH QT4 CH0 CH1 CH2 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH3 ┝╍┥┣┥ RB1 QT2 QT3RB2 S1 B1 S2 D1 S3 B2 S4 D2 S5 B3 S7 B4 S6 D3 S818 GHz 1.4 MeV/u 7.6 MeV/u 0.3 MeV/u 4.4 MeV/u ECR **BMBF** (Physik der kleinsten Teilchen) Z/m 0 10 20 30

Design parameters sc cw-LINAC		
A/q		≤ 6
Frequency	MHz	216.816
Beam current	mA	≤ 1
Injection energy	${\rm MeV/u}$	1.4
Output energy	MeV/u	3.5-7.6
Length	m	20
CH cavities	#	12
Rebuncher	#	4
Solenoids	#	8

Maximum energy per CM

Cryo Module	Output energy (MeV/u				
	A/Z=8.5	A/Z=6	A/Z=3	A/Z=1	
CM1	2.6	2.9	3.6	4.6	
CM2	3.5	4.2	5.5	7.7	
CM3	4.5	5.8	7.8	10.9	
CM4	5.55	7.6	10.5	14.6	

Scientific opportunities for SHE at the cwlinac

cw linac modules	no cw- Linac*	CM1-2	CM1-3 25%	CM1-3 100%	CM1-4 100%
Synthesis (Z ≤ 118)		up to 105			
Synthesis (Z > 118)					
Nuclear structure		up to 105	luty		
Mass spectrometry		up to 105	Ň		
Laser spectroscopy		up to 105	00 <i>(</i> Vcle		
Chemical studies			~ ບົ		
Overall SHE programm	Not possible	Only very small fraction of program	Possible, hardly long-term competitive	Full ca	pability
	*Consequences of Poststripper-				

Main advantages

- ✓ Higher machine availability for low-energy program
- ✓ Terminates interference SIS-injector ⇔ SHE program

Rf-upgrade

✓ Backup SIS-injector

Scientific opportunities for Material Science at HELIAC

cw Linac module/ Duty cycle (%)	no cw-Linac*		CM1-2 25%		(CM1-3 25%	CM1-4 100%
Nanotechnology							
Bulk material		not					
Surface processes		suitable				60%	full MAT
In-situ analysis		for MAT		limited		for MAT	program
Microprobe				MAT use		use	
Overall MAT program		10%		20%		60%	100%
	*Coi of Rf-	nsequences Poststripper- ·upgrade					

Main advantages for MAT program

- ✓ more regular beam access
- ✓ more suitable beam structure
- ✓ (no dose spikes, lower pulse current compensated by higher duty cycle)
- ✓ higher beam stability (no interference due to SIS injection)
- ✓ conditions suitable for commercial irradiations (scanning large areas, electronic devices)
- ✓ Backup SIS-injector

HELIAC R&D (PoF2)

- First superconducting 217 MHz-CH-Cavity
- High E_{acc}-gradient up to 10 MV/m
- High quality factor → low RF-dissipation (<10W)
- Equidistant gaps → continuous energy variation
- 2017: Successful beam commissioning

W. Barth, "Superconducting HELIAC-project", KHuK- Jahrestagung, 08-10. Dezember 2022

4K He-supply infrastructure@GSI

Testing Area @GSI

- ✓ Bunker, matching beam line and beam diagnostic bench in operation since 2020
- ✓ He-Infrastructure (linked to STF) is commissioned and in operation since 2021
- ✓ Preservation of transversal alignment of components during cool down <0.1mm</p>
- ✓ Cold Button Beam Position Monitor (BPM) is commissioned
- ✓ sc-Solenoids are tested with beam. Design with integrated steerer is validated

New Testbunker with test bench (2020)

CM1 at Test Bunker (2021)

W. Barth, "Superconducting HELIAC-project", KHuK- Jahrestagung, 08-10. Dezember 2022

Clean Room @ HI-Mainz unique infrastructure for SRF-R&D

ISO 6 Clean Room

ISO 4 Clean Room

- Two interconnected clean rooms 42m² (ISO6)+42m² (ISO4)
- Ultra high purity water supply
- Ultrasonic bath and conductance rinse
- High Pressure Rinse (HPR)
- RF-test bunker LHe infrastructure

cleaning of S2 in material lock

cleaning of S2 in ultrasonic bath

transfer to HPR with lifter

gear to trolley stand

integration of rf-power coupler with CH2

connection of S2 and CH2 with bellow

10/2022 Assembly of the cold string **11/2022** Integration into cryostat 12/2022 Integration into beamline @ GSI 02/2023 Cryo commissioning 03/2023 RF conditioning and commissioning of LLRF 08/2023 Commissioning with beam

Outlook I

Outlook II: HELIAC "basic approach"

- HELIAC is designed to fit into existing hall
- Feasibility study for civil construction/tunnel
- STF cryogenic plant for supply of HELIAC
- ECR 18GHz+LEBT \rightarrow purchasing?
- RFQ \rightarrow old HLI RFQ (25% duty)
- High power RF-amplifiers
- IH1/IH2 in manufacturing
- CM1 in assembly/testing

- CM2 in manufacturing
- CH-Cavities for CM3 in manufacturing
- Bending magnets from GSI-Stock, power supplies to be ordered
- Most of beam line magnets on GSI-Stock, most of power supplies to be ordered
- For "basic approach" (25% duty) reuse of existing high power rf-amplifiers
- water- and electrical-supply, vacuum system

Save Energy – buit HELIAC !

Power consumption UNILAC vs. HELIAC

P [kW]

HELIAC (sc) A/Z= 6, 7.5 MeV/u cw-operation		RF-amplifiers RF-amplifiers cryo supply Power Supplies Beam diagnostics Cooling water	ECR nc-Injector CM1-4 CM1-4 HELIAC tot. UNILAC HELIAC tot. tot.	23 27 80 13 15 50 20
		subsystem	section	P [kV
	A MARCENSON AND A MA	RF-amplifiers	HSI	600
LINUL AC (no)		RF-amplifiers	AI-AIII	190
UNILAC (IIC)	De too	RF-amplifiers	SGR	190
A/7 26 (HSI) $A/7 = 6$ (poststripper)	A A A A A A A A A A A A A A A A A A A	Power Supplies	HSI	70
7.5 MeV/u (A3 intermediate		Power Supplies	Poststripper	145
		Beam diagnostics	UNILAC	100

energy/7.1 MeV/u +3xERs) 30% RF-duty factor

cryo supply	CM1-4	130
Power Supplies	HELIAC tot.	150
Beam diagnostics	UNILAC	50
Cooling water	HELIAC tot.	200
	tot.	1110
subsystem	section	P [kW]
RF-amplifiers	HSI	600
RF-amplifiers	AI-AIII	1900
RF-amplifiers	SGR	190
Power Supplies	HSI	70
Power Supplies	Poststripper	145
Beam diagnostics	UNILAC	100
Cooling water	UNILAC	1200
Basic load	UNILAC	650
Ion source	Penning	40
	tot.	4895

section

subsystem

For typical beam time:

>90% less power consumption, energy savings for 6 months of operation (HELIAC vs. UNILAC) ≈ 16.4 GWh

Energy savings for 6 months UNILAC-experiment vs. 1.5 months/HELIAC ≈ 20 GWh

HELIAC "basic approach"-timeline

Q4/2023	CM1 (Advanced Demonstrator) beam test at Test Area
Q2/2025	Linac-Tunnel (@SH2/3) ready for installation of components
Q3&4/2025	ECR and LEBT commissioning @ Linac-tunnel
Q4/2025	CM2 beam test at Test Area
Q1/2026	RFQ commissioning @ Linac tunnel
Q2/2026	cw-IH-DTL commissioning @ Linac tunnel
Q3/2026	Matching Line & CM1 commissioning
Q4/2026	CM2 commissioning (and CM3 beam at Test Area)
Q1/2027	CM3 & HEBT to UNILAC commissioning (basic approach)

→ ERUM-PRO: continous wave (cw)-RFQ & (solid state) cw-high power RF-amplifier

Thank You for Your attention!